Publications by authors named "Stefan Steinbacher"

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid development of highly effective vaccines against SARS-CoV-2 has altered the trajectory of the pandemic, and antiviral therapeutics have further reduced the number of COVID-19 hospitalizations and deaths. Coronaviruses are enveloped, positive-sense, single-stranded RNA viruses that encode various structural and non-structural proteins, including those critical for viral RNA replication and evasion from innate immunity.

View Article and Find Full Text PDF

With the ever-increasing number of synthesis-on-demand compounds for drug lead discovery, there is a great need for efficient search technologies. We present the successful application of a virtual screening method that combines two advances: (1) it avoids full library enumeration (2) products are evaluated by molecular docking, leveraging protein structural information. Crucially, these advances enable a structure-based technique that can efficiently explore libraries with billions of molecules and beyond.

View Article and Find Full Text PDF

The Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor.

View Article and Find Full Text PDF

Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression.

View Article and Find Full Text PDF

Inhibition of KEAP1-NRF2 protein-protein interaction is considered a promising strategy to selectively and effectively activate NRF2, a transcription factor which is involved in several pathologies such as Huntington's disease (HD). A library of linear peptides based on the NRF2-binding motifs was generated on the nonapeptide lead Ac-LDEETGEFL-NH spanning residues 76-84 of the Neh2 domain of NRF2 with the aim to replace E78, E79 and E82 with non-acidic amino acids. A deeper understanding of the features and accessibility of the T80 subpocket was also targeted by structure-based design.

View Article and Find Full Text PDF

The NRF2-ARE pathway is an intrinsic mechanism of defense against oxidative stress. Inhibition of the interaction between NRF2 and its main negative regulator KEAP1 is an attractive strategy toward neuroprotective agents. We report here the identification of nonacidic tetrahydroisoquinolines (THIQs) that inhibit the KEAP1/NRF2 protein-protein interaction.

View Article and Find Full Text PDF

The pan-proteasome inhibitor bortezomib demonstrated clinical efficacy in off-label trials of Systemic Lupus Erythematosus. One potential mechanism of this clinical benefit is from the depletion of pathogenic immune cells (plasmablasts and plasmacytoid dendritic cells). However, bortezomib is cytotoxic against nonimmune cells, which limits its use for autoimmune diseases.

View Article and Find Full Text PDF

Aggregation of tau protein and spreading of tau aggregates are pivotal pathological processes in a range of neurological disorders. Accumulating evidence suggests that immunotherapy targeting tau may be a viable therapeutic strategy. We have previously described the isolation of antibody CBTAU-22.

View Article and Find Full Text PDF

The primary target of a novel series of immunosuppressive 7-piperazin-1-ylthiazolo[5,4- d]pyrimidin-5-amines was identified as the lipid kinase, PI4KIIIβ. Evaluation of the series highlighted their poor solubility and unwanted off-target activities. A medicinal chemistry strategy was put in place to optimize physicochemical properties within the series, while maintaining potency and improving selectivity over other lipid kinases.

View Article and Find Full Text PDF

Misfolding and aggregation of tau protein are closely associated with the onset and progression of Alzheimer's Disease (AD). By interrogating IgG memory B cells from asymptomatic donors with tau peptides, we have identified two somatically mutated V5-51/V4-1 antibodies. One of these, CBTAU-27.

View Article and Find Full Text PDF

New approaches to antimicrobial drug discovery are urgently needed to combat intractable infections caused by multidrug-resistant (MDR) bacteria. ultiple irulence actor egulator (MvfR or PqsR), a quorum sensing transcription factor, regulates functions important in both acute and persistent infections. Recently identified non-ligand-based benzamine-benzimidazole (BB) inhibitors of MvfR suppress both acute and persistent infections in mice without perturbing bacterial growth.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have become an important therapeutic modality for oncology, with three approved by the FDA and over 60 others in clinical trials. Despite the progress, improvements in ADC therapeutic index are desired. Peptide-based ADC linkers that are cleaved by lysosomal proteases have shown sufficient stability in serum and effective payload-release in targeted cells.

View Article and Find Full Text PDF

The highly specific S1 serine protease factor D (FD) plays a central role in the amplification of the complement alternative pathway (AP) of the innate immune system. Genetic associations in humans have implicated AP activation in age-related macular degeneration (AMD), and AP dysfunction predisposes individuals to disorders such as paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). The combination of structure-based hit identification and subsequent optimization of the center (S)-proline-based lead 7 has led to the discovery of noncovalent reversible and selective human factor D (FD) inhibitors with drug-like properties.

View Article and Find Full Text PDF

A prevalent observation in high-throughput screening and drug discovery programs is the inhibition of protein function by small-molecule compound aggregation. Here, we present the X-ray structural description of aggregation-based inhibition of a protein-protein interaction involving tumor necrosis factor α (TNFα). An ordered conglomerate of an aggregating small-molecule inhibitor (JNJ525) induces a quaternary structure switch of TNFα that inhibits the protein-protein interaction between TNFα and TNFα receptors.

View Article and Find Full Text PDF

We report here structure-guided optimization of a novel series of NF-κB inducing kinase (NIK) inhibitors. Starting from a modestly potent, low molecular weight lead, activity was improved by designing a type 11/2 binding mode that accessed a back pocket past the methionine-471 gatekeeper. Divergent binding modes in NIK and PI3K were exploited to dampen PI3K inhibition while maintaining NIK inhibition within these series.

View Article and Find Full Text PDF

The structure-activity and structure-kinetic relationships of a series of novel and selective ortho-aminoanilide inhibitors of histone deacetylases (HDACs) 1 and 2 are described. Different kinetic and thermodynamic selectivity profiles were obtained by varying the moiety occupying an 11Å channel leading to the Zn(2+) catalytic pocket of HDACs 1 and 2, two paralogs with a high degree of structural similarity. The design of these novel inhibitors was informed by two ligand-bound crystal structures of truncated hHDAC2.

View Article and Find Full Text PDF

MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have focused on developing inhibitors for the PI3Kα isoform due to its potential in cancer therapy, but achieving selectivity has been difficult.
  • The study reports the successful discovery of selective PI3Kα inhibitors by using crystal structures to design specific compounds that avoid inhibiting other kinases.
  • Their optimization led to the identification of GDC-0326 as a promising clinical candidate with enhanced selectivity for PI3Kα.
View Article and Find Full Text PDF

We have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors.

View Article and Find Full Text PDF

B-Raf represents an attractive target for anticancer therapy and the development of small molecule B-Raf inhibitors has delivered new therapies for metastatic melanoma patients. We have discovered a novel class of small molecules that inhibit mutant B-Raf(V600E) kinase activity both in vitro and in vivo. Investigations into the structure-activity relationships of the series are presented along with efforts to improve upon the cellular potency, solubility, and pharmacokinetic profile.

View Article and Find Full Text PDF

Rational structure-based design has yielded highly potent inhibitors of cathepsin K (Cat K) with excellent physical properties, selectivity profiles, and pharmacokinetics. Compounds with a 3,4-(CH₃O)₂Ph motif, such as 31, were found to have excellent metabolic stability and absorption profiles. Through metabolite identification studies, a reactive metabolite risk was identified with this motif.

View Article and Find Full Text PDF

The discovery of nitrile compound 4, a potent inhibitor of Cathepsin K (Cat K) with good bioavailability in dog is described. The compound was used to demonstrate target engagement and inhibition of Cat K in an in vivo dog PD model. The margin to hERG ion channel inhibition was deemed too low for a clinical candidate and an optimisation program to find isosteres or substitutions on benzothiazole group led to the discovery of 20, 24 and 27; all three free from hERG inhibition.

View Article and Find Full Text PDF

Directed screening of nitrile compounds revealed 3 as a highly potent cathepsin K inhibitor but with cathepsin S activity and very poor stability to microsomes. Synthesis of compounds with reduced molecular complexity, such as 7, revealed key SAR and demonstrated that baseline physical properties and in vitro stability were in fact excellent for this series. The tricycle carboline P3 unit was discovered by hypothesis-based design using existing structural information.

View Article and Find Full Text PDF

Influenza nucleoprotein (NP) plays multiple roles in the virus life cycle, including an essential function in viral replication as an integral component of the ribonucleoprotein complex, associating with viral RNA and polymerase within the viral core. The multifunctional nature of NP makes it an attractive target for antiviral intervention, and inhibitors targeting this protein have recently been reported. In a parallel effort, we discovered a structurally similar series of influenza replication inhibitors and show that they interfere with NP-dependent processes via formation of higher-order NP oligomers.

View Article and Find Full Text PDF

In the past two decades, fragment-based approaches have evolved as a predominant strategy in lead discovery. The availability of structural information on the interaction geometries of binding fragments is key to successful structure-guided fragment-to-lead evolution. In this chapter, we illustrate methodological advances for protein-fragment crystal structure generation in order to offer general lessons on the importance of fragment properties and the most appropriate crystallographic setup to evaluate them.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: