Publications by authors named "Stefan Sonderegger"

Poly(ethylene glycol) (PEG) is a hydrophilic polymer ubiquitously used in both medical and nonmedical goods. Recent debate surrounding the observed stimulation of immune responses against PEG has spurred the development of materials that may be suitable replacements for this common polymeric component. The underlying view is that these alternative materials with comparable physicochemical properties can overcome the unfavorable and unpredictable effects of antibody-mediated clearance by being chemically, and therefore antigenically, distinct from PEG.

View Article and Find Full Text PDF

Poly(2-oxazoline)s (POx) have received substantial attention as poly(ethylene glycol) (PEG) alternatives in the biomedical field due to their biocompatibility, high functionality, and ease of synthesis. While POx have demonstrated strong potential as biomaterial constituents, the larger family of poly(cyclic imino ether)s (PCIE) to which POx belongs remains widely underexplored. One highly interesting sub-class of PCIE is poly(2,4-disubstituted-2-oxazoline)s (PdOx), which bear an additional substituent on the backbone of the polymers' repeating units.

View Article and Find Full Text PDF

Nanomedicines show benefits in overcoming the limitations of conventional drug delivery systems by reducing side effects, toxicity, and exhibiting enhanced pharmacokinetic (PK) profiles to improve the therapeutic window of small-molecule drugs. However, upon administration, many nanoparticles (NPs) prompt induction of host innate immune responses, which in combination with other clearance pathways such as renal and hepatic, eliminate up to 99% of the administered dose. Here, we explore a drug predosing strategy to transiently suppress the mononuclear phagocyte system (MPS), subsequently improving the PK profile and biological behaviors exhibited by a model NP system [hyperbranched polymers (HBPs)] in an immunocompetent mouse model.

View Article and Find Full Text PDF

Improving our understanding of how design choices in materials synthesis impact biological outcomes is of critical importance in the development of nanomedicines. Here, we show that fluorophore labeling of polymer nanomedicine candidates significantly alters their transport and cell association in multi-cellular tumor spheroids and their penetration in breast cancer xenografts, dependent on the type of the fluorophore and their positioning within the macromolecular structure. These data show the critical importance of the biomaterials structure and architecture in their tissue distribution and intracellular trafficking, which in turn govern their potential therapeutic efficacy.

View Article and Find Full Text PDF

The complement system has demonstrated roles in regulating tumor growth, although these may differ between tumor types. The current study used two murine breast cancer models (EMT6 and 4T1) to investigate whether pharmacological targeting of receptors for complement proteins C3a (C3aR) and C5a (C5aR1) is protective in murine breast cancer models. In contrast to prior studies in other tumor models, treatment with the selective C5aR1 antagonist PMX53 had no effect on tumor growth.

View Article and Find Full Text PDF

Intensive chemotherapy for acute leukemia can usually induce complete remission, but fails in many patients to eradicate the leukemia stem cells responsible for relapse. There is accumulating evidence that these relapse-inducing cells are maintained and protected by signals provided by the microenvironment. Thus, inhibition of niche signals is a proposed strategy to target leukemia stem cells but this requires knowledge of the critical signals and may be subject to compensatory mechanisms.

View Article and Find Full Text PDF

Integrating nanomaterials with biological entities has led to the development of diagnostic tools and biotechnology-derived therapeutic products. However, to optimize the design of these hybrid bionanomaterials, it is essential to understand how controlling the biological interactions will influence desired outcomes. Ultimately, this knowledge will allow more rapid translation from the bench to the clinic.

View Article and Find Full Text PDF

In light of research reporting abnormal pharmacokinetic behavior for therapeutics and formulations containing poly(ethylene glycol) (PEG), a renewed emphasis has been placed on exploring alternative surrogate materials and tailoring specific materials to distinct nanomedicine applications. Poly(2-oxazolines) (POx) have shown great promise in this regard; however, a comparison of POx and PEG interactions with components of the immune system is needed to inform on their distinct suitability. Herein, the interaction of isolated immune cells following injection of hyperbranched polymers comprised of PEG or hydrophilic POx macromonomers was determined via flow cytometry.

View Article and Find Full Text PDF

Stem cell leukemia ( or ) and lymphoblastic leukemia 1 () encode highly related members of the basic helix-loop-helix family of transcription factors that are co-expressed in the erythroid lineage. Previous studies have suggested that is essential for primitive erythropoiesis. However, analysis of single-cell RNA-seq data of early embryos showed that primitive erythroid cells express both and Therefore, to determine whether can function in primitive erythropoiesis, we crossed conditional knockout mice with mice expressing a Cre recombinase under the control of the Epo receptor, active in erythroid progenitors.

View Article and Find Full Text PDF

Pre-leukemic stem cells (pre-LSCs) give rise to leukemic stem cells through acquisition of additional gene mutations and are an important source of relapse following chemotherapy. We postulated that cell-cycle kinetics of pre-LSCs may be an important determinant of clonal evolution and therapeutic resistance. Using a doxycycline-inducible H2B-GFP transgene in a mouse model of T-cell acute lymphoblastic leukemia to study cell cycle in vivo, we show that self-renewal, clonal evolution and therapeutic resistance are limited to a rare population of pre-LSCs with restricted cell cycle.

View Article and Find Full Text PDF

Elevated expression of the Zinc finger E-box binding homeobox transcription factor-2 (ZEB2) is correlated with poor prognosis and patient outcome in a variety of human cancer subtypes. Using a conditional gain-of-function mouse model, we recently demonstrated that ZEB2 is an oncogenic driver of immature T-cell acute lymphoblastic leukemia (T-ALL), a heterogenic subgroup of human leukemia characterized by a high incidence of remission failure or hematological relapse after conventional chemotherapy. Here, we identified the lysine-specific demethylase KDM1A as a novel interaction partner of ZEB2 and demonstrated that mouse and human T-ALLs with increased ZEB2 levels critically depend on KDM1A activity for survival.

View Article and Find Full Text PDF

Protein kinase B/AKT is critically involved in murine placental development and migration of human placental trophoblasts into maternal uterine tissue. However, localization of the three AKT isoforms within human placenta and their roles in extravillous trophoblasts have not been elucidated. Therefore, we analyzed the expression pattern and function of AKT1, AKT2, and AKT3 in migratory human trophoblasts using SGHPL-5 cell pools stably expressing small-hairpin microRNA (shRNAmir) against AKT1, AKT2, or AKT3 as a model.

View Article and Find Full Text PDF

Endometrial carcinoma is the most common gynaecological malignancy. There is however a lack of curative therapies, especially for patients diagnosed with late stage, recurrent or aggressive disease, who have a poor prognosis. Interleukin (IL) 11 is a pleiotropic cytokine that has a role in a number of cancers including colon and breast cancer.

View Article and Find Full Text PDF

Wnt signals contribute to melanoma progression by boosting their proliferation and survival. Initially, we expected that activated Wnt signaling also improves their proficiency to recruit blood and lymph vessels. To assess this, we added cell culture supernatants (SNs) of Wnt1(+) and Wnt1(-) melanoma to endothelial spheroids.

View Article and Find Full Text PDF

Background: Human trophoblast invasion and differentiation are essential for a successful pregnancy outcome. Dysregulation of these processes can lead to placental pathologies such as pre-eclampsia. The molecular mechanisms; however, are poorly understood.

View Article and Find Full Text PDF

The basic helix-span-helix transcription factor activating protein (AP)-2α is critically involved in cell-specific hormone expression of syncytializing human trophoblasts. Its role in invasive trophoblast differentiation, however, remains largely elusive. Using RT-PCR, Western blotting, and immunofluorescence of first-trimester placentae, we here show that AP-2α is expressed in extravillous trophoblasts (EVTs) both in situ and in vitro as well as in invasive trophoblast cell lines.

View Article and Find Full Text PDF

This review summarizes several aspects especially of regulating factors governing trophoblast invasion. Those include the composition of the extracellular matrix containing a variety of matrix metalloproeinases and their inhibitors, but also intracellular signals. Furthermore, a newly described trophoblast subtype, the endoglandular trophoblast, is presented.

View Article and Find Full Text PDF

Invasion of human trophoblasts is promoted through activation of wingless (Wnt) signaling, suggesting a role of the pathway in placental development and morphogenesis. However, details on the process such as involvement of canonical and/or noncanonical Wnt signaling cascades as well as their target genes are largely unknown. Hence, signal transduction via canonical Wnt signaling or phosphatidylinositide 3-kinase (PI3K)/AKT and their cross talk as well as trophoblast-specific protease expression were investigated in trophoblastic SGHPL-5 cells and primary extravillous trophoblasts purified from first-trimester placentas.

View Article and Find Full Text PDF

Chorionic gonadotropin (CG) is indispensable for human pregnancy because it controls implantation, decidualization, and placental development. However, its particular role in the differentiation process of invasive trophoblasts has not been fully unraveled. Here we demonstrate that the hormone promotes trophoblast invasion and migration in different trophoblast model systems.

View Article and Find Full Text PDF

The molecular mechanisms governing invasive differentiation of human trophoblasts remain largely elusive. Here, we investigated the role of Wnt-beta-catenin-T-cell factor (TCF) signaling in this process. Reverse transcriptase-polymerase chain reaction and Western blot analyses demonstrated expression of Wnt ligands, frizzled receptors, LRP-6, and TCF-3/4 transcription factors in total placenta and different trophoblast cell models.

View Article and Find Full Text PDF

Downregulation of E-cadherin is a crucial event for epithelial to mesenchymal transition (EMT) in embryonic development and cancer progression. Using the EpFosER mammary tumour model we show that during EMT, upregulation of the transcriptional regulator deltaEF1 coincided with transcriptional repression of E-cadherin. Ectopic expression of deltaEF1 in epithelial cells was sufficient to downregulate E-cadherin and to induce EMT.

View Article and Find Full Text PDF