Publications by authors named "Stefan Seifert"

Background: The timely and geographical resolutions, as well as the quantity and taxon concepts of records on the occurrence of plants near national borders is often ambiguous. This is due to the regional focus and different approaches of the contributing national and regional databases and networks of the neighbouring countries. Careful data transformation between national data providers is essential for understanding distribution patterns and its dynamics for organisms in areas along the national borders.

View Article and Find Full Text PDF

Gamma dose rate (GDR) monitors are the most widely used tool for continuous monitoring of environmental radioactivity. They are inexpensive to procure and operate, and generally require little maintenance. However, since no spectral information is available, the detection limit for irregularities is correspondingly high; A value around 20 nSv/h is often called out.

View Article and Find Full Text PDF

In the presented work, the potential of fiber-optic distributed acoustic sensing (DAS) for detection of small gas pipeline leaks (<1%) is investigated. Helical wrapping of the sensing fiber directly around the pipeline is used to increase the system sensitivity for detection of weak leak-induced vibrations. DAS measurements are supplemented with reference accelerometer data to facilitate analysis and interpretation of recorded vibration signals.

View Article and Find Full Text PDF

Aim: Processing of the samples in molecular diagnostics is complex and labor-intensive. An integrated and automated platform for sample preparation and nucleic acid-based detection can significantly relieve this burden for the users.

Results: We present a prototype of a versatile and integrated platform for the detection of pathogens in various liquid media.

View Article and Find Full Text PDF

Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods.

View Article and Find Full Text PDF

Monolithic scintillator detectors can offer a combination of spatial resolution, energy resolution, timing performance, depth-of-interaction information, and detection efficiency that make this type of detector a promising candidate for application in clinical, time-of-flight (TOF) positron emission tomography (PET). In such detectors the scintillation light is distributed over a relatively large number of photosensor pixels and the light intensity per pixel can be relatively low. Therefore, monolithic scintillator detectors are expected to benefit from the low readout noise offered by a novel photosensor called the digital silicon photomultiplier (dSiPM).

View Article and Find Full Text PDF

The objective of this paper is to present observations, results from monitoring measurements, and preliminary conclusions about the development of patterns and structures during the first 5 years of development of an artificial catchment starting from point zero. We discuss the high relevance of initial system traits and external events for the system development and draw conclusions for further research. These investigations as part of a Collaborative Research Center, aim to disentangle and understand the feedback mechanisms and interrelationships of processes and their co-development with spatial and temporal structures and patterns by studying an initial, probably less complex ecosystem.

View Article and Find Full Text PDF

In the design and application of scintillation detectors based on silicon photomultipliers (SiPMs), e.g. in positron emission tomography imaging, it is important to understand and quantify the non-proportionality of the SiPM response due to saturation, crosstalk and dark counts.

View Article and Find Full Text PDF

Positron emission tomography detectors based on monolithic scintillation crystals exhibit good spatial and energy resolution, intrinsically provide depth-of-interaction information, have high γ-photon capture efficiency, and may reduce the manufacturing costs compared to pixelated crystal arrays. Here, we present the characterization of a detector consisting of a 18.0 mm×16.

View Article and Find Full Text PDF

The timing performance of scintillation detectors is ultimately limited by photon counting statistics. In fact, photon counting statistics form a dominant contribution to the overall timing resolution of many state-of-the-art detectors. A common approach to investigate this contribution is to calculate the variance in the registration times of individual scintillation photons within the photosensor.

View Article and Find Full Text PDF

Several new methods for determining the depth of interaction (DOI) of annihilation photons in monolithic scintillator detectors with single-sided, multi-pixel readout are investigated. The aim is to develop a DOI decoding method that allows for practical implementation in a positron emission tomography system. Specifically, calibration data, obtained with perpendicularly incident gamma photons only, are being used.

View Article and Find Full Text PDF

Background: Although explosion injuries caused by terror attacks or in war are evaluated in many studies, limited information about civil explosion injuries can be found in the literature.

Methods: In a retrospective study of 71 civil gas explosion injuries treated in a single burn center during a 16-year period, we evaluated trauma mechanisms, patterns of injury, and clinical outcome.

Results: More than 50% of all gas explosions injuries occurred in private households.

View Article and Find Full Text PDF

The use of time-of-flight (TOF) information in positron emission tomography (PET) enables significant improvement in image noise properties and, therefore, lesion detection. Silicon photomultipliers (SiPMs) are solid-state photosensors that have several advantages over photomultiplier tubes (PMTs). SiPMs are small, essentially transparent to 511 keV gamma rays and insensitive to magnetic fields.

View Article and Find Full Text PDF

Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes.

View Article and Find Full Text PDF

Combined kinetic (electrochemical) and thermodynamic (calorimetric) investigations were performed for an unbound (intact native-like) cytochrome c (CytC) freely diffusing to and from gold electrodes modified by hydroxyl-terminated self-assembled monolayer films (SAMs), under a unique broad range of experimental conditions. Our approach included: 1) fine-tuning of the charge-transfer (CT) distance by using the extended set of Au-deposited hydroxyl-terminated alkanethiol SAMs [-S-(CH(2))(n)-OH] of variable thickness (n=2, 3, 4, 6, 11); 2) application of a high-pressure (up to 150 MPa) kinetic strategy toward the representative Au/SAM/CytC assemblies (n=3, 4, 6); 3) complementary electrochemical and microcalorimetric studies on the impact of some stabilizing and denaturing additives. We report for the first time a mechanistic changeover detected for "free" CytC by three independent kinetic methods, manifested through 1) the abrupt change in the dependence of the shape of the electron exchange standard rate constant (k(o)) versus the SAM thickness (resulting in a variation of estimated actual CT range within ca.

View Article and Find Full Text PDF