Publications by authors named "Stefan Schuechner"

Cryptochromes (CRY) are highly conserved signalling molecules that regulate circadian rhythms and are candidate radical pair based magnetoreceptors. Birds have at least four cryptochromes (CRY1a, CRY1b, CRY2, and CRY4), but few studies have interrogated their function. Here we investigate the expression, localisation and interactome of clCRY2 in the pigeon retina.

View Article and Find Full Text PDF

The biophysical and molecular mechanisms that enable animals to detect magnetic fields are unknown. It has been proposed that birds have a light-dependent magnetic compass that relies on the formation of radical pairs within cryptochrome molecules. Using spectroscopic methods, we show that pigeon cryptochrome clCRY4 is photoreduced efficiently and forms long-lived spin-correlated radical pairs via a tetrad of tryptophan residues.

View Article and Find Full Text PDF

The transcription factor ZENK is an immediate early gene that has been employed as a surrogate marker to map neuronal activity in the brain. It has been used in a wide variety of species, however, commercially available antibodies have limited immunoreactivity in birds. To address this issue we generated a new mouse monoclonal antibody, 7B7-A3, raised against ZENK from the rock pigeon (Columba livia).

View Article and Find Full Text PDF

Cancer cells increase glucose metabolism to support aerobic glycolysis. However, only some cancer cells are acutely sensitive to glucose withdrawal, and the underlying mechanism of this selective sensitivity is unclear. We showed that glucose deprivation initiates a cell death pathway in cancer cells that is dependent on the kinase RIPK1.

View Article and Find Full Text PDF

Carboxymethylation and phosphorylation of protein phosphatase 2A (PP2A) catalytic C subunit are evolutionary conserved mechanisms that critically control PP2A holoenzyme assembly and substrate specificity. Down-regulation of PP2A methylation and PP2A enzymes containing the B alpha regulatory subunit occur in Alzheimer's disease. In this study, we show that expressed wild-type and methylation- (L309 Delta) and phosphorylation- (T304D, T304A, Y307F, and Y307E) site mutants of PP2A C subunit differentially bind to B, B', and B''-type regulatory subunits in NIH 3T3 fibroblasts and neuro-2a (N2a) neuroblastoma cells.

View Article and Find Full Text PDF

BRCA1 is involved in maintaining genomic integrity and, as a regulator of the G2/M checkpoint, contributes to DNA repair and cell survival. The overexpression of BRCA1 elicits diverse cellular responses including apoptosis due to the stimulation of specific signaling pathways. BRCA1 is normally regulated by protein turnover, but is stabilized by BARD1 which can recruit BRCA1 to the nucleus to form a ubiquitin E3 ligase complex involved in DNA repair or cell survival.

View Article and Find Full Text PDF

The oncogenic protein beta-catenin is overexpressed in many cancers, frequently accumulating in nuclei where it forms active complexes with lymphoid enhancer factor-1 (LEF-1)/T-cell transcription factors, inducing genes such as c-myc and cyclin D1. In normal cells, nuclear beta-catenin levels are controlled by the adenomatous polyposis coli (APC) protein through nuclear export and cytoplasmic degradation. Transient expression of LEF-1 is known to increase nuclear beta-catenin levels by an unknown mechanism.

View Article and Find Full Text PDF