Publications by authors named "Stefan Schoeche"

We report the results of Brillouin-Mandelstam spectroscopy and Mueller matrix spectroscopic ellipsometry of the nanoscale 'pillar with the hat' periodic silicon structures, revealing intriguing phononic and photonic-phoxonic-properties. It has been theoretically shown that periodic structures with properly tuned dimensions can act simultaneously as phononic and photonic crystals, strongly affecting the light-matter interactions. Acoustic phonon states can be tuned by external boundaries, either as a result of phonon confinement effects in individual nanostructures, or as a result of artificially induced external periodicity, as in the phononic crystals.

View Article and Find Full Text PDF

We show that packed, horizontally aligned films of single-walled carbon nanotubes are hyperbolic metamaterials with ultrasubwavelength unit cells and dynamic tunability. Using Mueller matrix ellipsometry, we characterize the films' optical properties, which are doping level dependent, and find a broadband hyperbolic region tunable in the mid-infrared. To characterize the dispersion of in-plane hyperbolic plasmon modes, we etch the nanotube films into nanoribbons with differing widths and orientations relative to the nanotube axis, and we observe that the hyperbolic modes support strong light localization.

View Article and Find Full Text PDF

Hyperbolic metamaterials are optical materials characterized by highly anisotropic effective permittivity tensor components having opposite signs along orthogonal directions. The techniques currently employed for characterizing the optical properties of hyperbolic metamaterials are limited in their capability for robust extraction of the complex permittivity tensor. Here we demonstrate how an ellipsometry technique based on total internal reflection can be leveraged to extract the permittivity of hyperbolic metamaterials with improved robustness and accuracy.

View Article and Find Full Text PDF