Testing the extent to which ecological communities are structured by deterministic (niche-based) assembly processes, resulting in predictable species abundance and composition, is a fundamental goal of ecology. Here we use a 10-year dataset of 55,156 lianas comprising 86 species in an old-growth tropical forest in Panama to test whether community assembly is consistent with niche-based assembly processes. We find that species diversity and community composition was maintained because species conformed to four general requirements of coexistence theory: (1) species have negative conspecific frequency-dependent feedback that control their local population size; (2) species have a stronger negative effect on their own population than that of heterospecifics; (3) the equilibrium frequencies of species correspond to their relative abundance; and (4) species have positive invasibility.
View Article and Find Full Text PDFLianas (woody climbers) are crucial components of tropical forests and they have been increasingly recognized to have profound effects on tropical forest carbon dynamics. Despite their importance, lianas' representation in vegetation models remains limited, partly due to the complexity of liana-tree dynamics and the diversity in liana life history strategies. This paper provides a comprehensive review of advances and challenges for mechanistically representing lianas in forest ecosystem models and a proposed path towards effectively representing lianas in these models.
View Article and Find Full Text PDFConspecific density dependence (CDD) in plant populations is widespread, most likely caused by local-scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD-related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local-scale CDD and its causes, including species-specific antagonistic and mutualistic interactions.
View Article and Find Full Text PDFExtending and safeguarding tropical forest ecosystems is critical for combating climate change and biodiversity loss. One of its constituents, lianas, is spreading and increasing in abundance on a global scale. This is particularly concerning as lianas negatively impact forests' carbon fluxes, dynamics, and overall resilience, potentially exacerbating both crises.
View Article and Find Full Text PDFLianas are major contributors to tropical forest dynamics, yet we know little about their mortality. Using overlapping censuses of the lianas and trees across a 50 ha stand of moist tropical forest, we contrasted community-wide patterns of liana mortality with relatively well-studied patterns of tree mortality to quantify patterns of liana death and identify contributing factors. Liana mortality rates were 172% higher than tree mortality rates, but species-level mortality rates of lianas were similar to trees with 'fast' life-history strategies and both growth forms exhibited similar spatial and size-dependent patterns.
View Article and Find Full Text PDFClimate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support.
View Article and Find Full Text PDFDetermining population demographic rates is fundamental to understanding differences in species' life-history strategies and their capacity to coexist. Calculating demographic rates, however, is challenging and requires long-term, large-scale censuses. Body size may serve as a simple predictor of demographic rate; can it act as a proxy for demographic rate when those data are unavailable? We tested the hypothesis that maximum body size predicts species' demographic rate using repeated censuses of the 77 most common liana species on the Barro Colorado Island, Panama (BCI) 50-ha plot.
View Article and Find Full Text PDFLightning is an important agent of plant mortality and disturbance in forests. Lightning-caused disturbance is highly variable in terms of its area of effect and disturbance severity (i.e.
View Article and Find Full Text PDFPremise: Determining how xylem vessel diameters vary among plants and across environments gives insights into different water-use strategies among species and ultimately their distributions. Here, we tested the vessel dimorphism hypothesis that the simultaneous occurrence of many narrow and a few wide vessels gives lianas an advantage over trees in seasonally dry environments.
Methods: We measured the diameters of 13,958 vessels from 15 liana species and 10,430 vessels from 16 tree species in a tropical seasonal rainforest, savanna, and subtropical evergreen broadleaved forest.
The well-established pattern of forest thinning during succession predicts an increase in mean tree biomass with decreasing tree density. The forest thinning pattern is commonly assumed to be driven solely by tree-tree competition. The presence of non-tree competitors could alter thinning trajectories, thus altering the rate of forest succession and carbon uptake.
View Article and Find Full Text PDFAmong tropical forests, lianas are predicted to have a growth advantage over trees during seasonal drought, with substantial implications for tree and forest dynamics. We tested the hypotheses that lianas maintain higher water status than trees during seasonal drought and that lianas maximize leaf cover to match high, dry-season light conditions, while trees are more limited by moisture availability during the dry season. We monitored the seasonal dynamics of predawn and midday leaf water potentials and leaf phenology for branches of 16 liana and 16 tree species in the canopies of two lowland tropical forests with contrasting rainfall regimes in Panama.
View Article and Find Full Text PDFLianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees.
View Article and Find Full Text PDFCanopy disturbance explains liana abundance and distribution within tropical forests and thus may also explain the widespread pattern of increasing liana abundance; however, this hypothesis remains untested. We used a 10-year study (2007-2017) of 117,100 rooted lianas in an old-growth Panamanian forest to test whether local canopy disturbance explains increasing liana abundance. We found that liana density increased 29.
View Article and Find Full Text PDFOne of the central goals of ecology is to determine the mechanisms that enable coexistence among species. Evidence is accruing that conspecific negative density dependence (CNDD), the process by which plant seedlings are unable to survive in the area surrounding adults of their same species, is a major contributor to tree species coexistence. However, for CNDD to maintain community-level diversity, three conditions must be met.
View Article and Find Full Text PDFYoung successional tropical forests are crucial in the global carbon cycle because they can quickly sequester large quantities of atmospheric carbon. However, lianas (woody vines) can significantly decrease biomass accumulation in young regenerating forests. Lianas are abundant in tropical dry forests, and thus we hypothesized that lianas reduce biomass accretion in dry forests.
View Article and Find Full Text PDFOver the past two decades, liana density and basal area have been increasing in many tropical forests, which has profound consequences for forest diversity and functioning. One hypothesis to explain increasing lianas is elevated nutrient deposition in tropical forests resulting from fossil fuels, agricultural fertilizer, and biomass burning. We tested this hypothesis by surveying all lianas ≥1 cm in diameter (n = 3,967) in 32 plots in a fully factorial nitrogen (N), phosphorus (P), and potassium (K) addition experiment in a mature tropical forest in central Panama.
View Article and Find Full Text PDFThe spatial habitat heterogeneity hypothesis posits that habitat complexity increases the abundance and diversity of species. In tropical forests, lianas add substantial habitat heterogeneity and complexity throughout the vertical forest profile, which may maintain animal abundance and diversity. The effects of lianas on tropical animal communities, however, remain poorly understood.
View Article and Find Full Text PDFEarly successional tropical forests could mitigate climate change via rapid accumulation of atmospheric carbon. However, liana (woody vine) abundance and biomass has been increasing in many tropical forests over the past decades, which may slow the speed at which secondary forests accumulate biomass. Lianas decrease biomass accumulation in tropical forests, and may have a particularly strong effect on young forests by stalling tree growth.
View Article and Find Full Text PDFConcern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon.
View Article and Find Full Text PDFThere are two theories about how allocation of metabolic products occurs. The allometric biomass partitioning theory (APT) suggests that all plants follow common allometric scaling rules. The optimal partitioning theory (OPT) predicts that plants allocate more biomass to the organ capturing the most limiting resource.
View Article and Find Full Text PDFISPRS J Photogramm Remote Sens
August 2019
Lianas are key structural elements of tropical forests having a large impact on the global carbon cycle by reducing tree growth and increasing tree mortality. Despite the reported increasing abundance of lianas across neotropics, very few studies have attempted to quantify the impact of lianas on tree and forest structure. Recent advances in high resolution terrestrial laser scanning (TLS) systems have enabled us to quantify the forest structure, in an unprecedented detail.
View Article and Find Full Text PDFLianas are more abundant in seasonal forests than in wetter forests and are thought to perform better than trees when light is abundant and water is limited. We tested the hypothesis that lianas perform better than trees during seasonal drought using a common garden experiment with 12 taxonomically diverse species (six liana and six tree species) in 12 replicated plots. We irrigated six of the plots during the dry season for four years, while the remaining six control plots received only ambient rainfall.
View Article and Find Full Text PDF