Employing dimensionality-reduced time-independent quantum scattering theory and summation over all possible total angular momentum states, initial-state selected reaction cross sections for the exothermic gas-phase bimolecular nucleophilic substitution (SN2) reaction Cl(-) + CH3Br → ClCH3 + Br(-) have been calculated. The carbon-halogen bonds and the rotation of the methyl halides are taken into account. In agreement with previous calculations for J = 0, initial rotational motion of CH3Br decreases the reaction probability and consequently the cross sections.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2015
A nearside/farside analysis of differential cross sections has been performed for the complex-forming SN2 reaction Cl(-) + CH3Br → ClCH3 + Br(-). It is shown that for low rotational quantum numbers a direct "nearside" reaction mechanism plays an important role and leads to anisotropic differential cross sections. For high rotational quantum numbers, indirect mechanisms via a long-lived intermediate complex are prevalent (independent of a nearside/farside configuration), leading to isotropic cross sections.
View Article and Find Full Text PDFThe Coulomb explosion of the octamer water cluster has been studied employing time-dependent density functional theory explicitly accounting for the laser field and thus not imposing any constraint on the interaction between the laser pulse and the cluster. We focus on the effects of electron density changes in the system under high-intensity (10(16) and 10(15) W cm(-2)) soft X-ray laser pulses and their fingerprint in the reciprocal space, namely the ultrafast changes in X-ray diffuse scattering signals in k-space (in the investigated k-space range from 10(-3) up to 10 Å(-1)). The present simulations indicate that diffusional components in X-ray intensity changes propagate from low reciprocal resolution (resembling the small-angle X-ray scattering regime) to very high resolution (the wide-angle X-ray scattering regime) during the Coulomb explosion process.
View Article and Find Full Text PDFDifferential reaction cross sections have been computed based on previous rotationally resolved time-independent quantum-mechanical scattering calculations for the complex-forming S(N)2 reaction Cl(-) + CH(3)Br → ClCH(3) + Br(-). The results show almost isotropic cross sections for reactant molecules with high rotational quantum numbers. Backward scattering is disfavoured for reaction out of states with small rotational excitation, in particular the rovibrational ground state.
View Article and Find Full Text PDFIn this work, the Coulomb explosion of the octamer water cluster has been studied employing a theoretical approach. Instead of the usual methodology that makes use of classical molecular dynamics, time-dependent density functional theory has been applied to tackle the problem. This method explicitly accounts for the laser field and thus does not impose any constraint on the interaction between the laser pulse and the cluster.
View Article and Find Full Text PDFThe enhancement of the x-ray scattering signal from partially aligned molecular samples is investigated. The alignment properties of the studied molecular system are modeled based on the method of laser alignment. With the advances in the area of laser alignment of molecules, the application of this sample manipulation technique promises a great potential for x-ray scattering measurements.
View Article and Find Full Text PDFWe computationally examine various aspects of the reaction dynamics of the photodissociation and recombination of molecular iodine. We use our recently proposed formalism to calculate time-dependent x-ray scattering signal changes from first principles. Different aspects of the dynamics of this prototypical reaction are studied, such as coherent and noncoherent processes, features of structural relaxation that are periodic in time versus nonperiodic dissociative processes, as well as small electron density changes caused by electronic excitation, all with respect to x-ray scattering.
View Article and Find Full Text PDFThe quantum dynamics of the complex-forming S(N)2 reaction Cl(-)+CH(3)Br-->ClCH(3)+Br(-) is studied with emphasis on rotational effects. The pseudotriatomic system Cl-Me-Br is treated with a corresponding three-dimensional (3D) potential energy surface as a function of the two scattering coordinates and the enclosed angle where the geometry of the methyl group Me is optimized at each point. The 3D space is divided into three different parts, the interaction region, an intermediate region, and the asymptotic region.
View Article and Find Full Text PDFAuxiliary-mediated domino crotylations and pentenylations of butanone yield homoallylic ethers with two newly formed stereogenic centers. With our norpseudoephedrine-derived auxiliary, we observed the formation of anti isomers exclusively, and the nature of the major isomer was independent of the substrate double bond geometry. Interestingly, there is a switch in induced selectivity when going from crotylation to pentenylation.
View Article and Find Full Text PDFComputational investigations on the highly stereoselective allylation of butanone in the presence of a chiral norpseudoephedrine-derived auxiliary have been performed. They suggest an SN1-type mechanism via the attack of allyltrimethylsilane to an intermediately formed oxocarbenium ion. The identification of preferred transition states (TSs) leads to a straightforward rationalization of the observed selectivity which can be extended to analogues of the auxiliary.
View Article and Find Full Text PDFIn this work we present a general theoretical outline for calculating time-dependent x-ray scattering signal changes from first principles. We derive a formalism for the description of atom-atom correlation functions as Fourier transforms of quantum-chemically calculated electron densities and show their proportionality to the molecular form factor. The formalism derived in this work is applied to the photoisomerization of stilbene.
View Article and Find Full Text PDFWe report on experimentally determined and computationally predicted diastereoselectivities of (a) multicomponent crotylation (MCC) reactions of simple aliphatic aldehydes and ketones and (b) of acetal substitution (AS) reactions of aldehyde dimethyl acetals with E- and Z-configurated crotyl trimethylsilane to give homoallylic methyl ethers bearing two newly formed stereogenic centers. We found that corresponding MCC and AS reactions give nearly equal syn/anti ratios. While the crotylations of acetaldehyde and propionaldehyde mainly result in the syn product for E-configurated silane and in the anti product for Z-configurated silane, the syn product is found as main product for the crotylation of pivaldehyde regardless of substrate double bond geometry.
View Article and Find Full Text PDFFour-dimensional time-independent quantum scattering calculations have been carried out on the perdeuterated exothermic and complex-forming gas-phase S(N)2 reaction Cl- + CD3Br --> ClCD3 + Br- and the reverse process Br- + CD3Cl --> BrCD3 + Cl-, employing a fine energetic resolution to resolve all scattering resonances. The two totally symmetric modes of the methyl group, C-D symmetric stretch and umbrella bend, are explicitly taken into account. Converged state-selected reaction probabilities and product distributions have been calculated up to 2960 cm(-1) above the vibrational ground state of CD3Br, i.
View Article and Find Full Text PDFWithin the framework of reduced-dimensionality quantum scattering theory, we employ Bowman's adiabatic rotation approximation to describe reactive systems that have symmetric-top geometries during the entire collision process. The results are compared with the approach of shifting the total energy by a characteristic rotational energy. Initial state-selected and total thermal rate constants have been computed for the complex-forming gas-phase reaction Cl(-) + CH(3)Cl' --> ClCH(3) + Cl'(-).
View Article and Find Full Text PDFThe role of 19-electron intermediates in the photochemical disproportionation of [CpW(CO)3]2 (Cp = C5H5) with Lewis bases (PR3; R = OMe, Bu, Ph) is investigated on the ultrafast time scale using femtosecond VIS-pump, IR-probe spectroscopy. Formation of a 19-electron (19e) species CpW(CO)3PR3*by coordination of PR3 with photogenerated 17-electron (17e) radicals CpW(CO)3* is directly observed, and equilibrium is established between the 17e radicals and the 19e intermediates favoring 19e intermediates in the order: Bu > OMe >> Ph. Steric effects dominate the 17e/19e equilibrium when the cone-angle of the Lewis base exceeds a certain limiting value (between 132 degrees and 145 degrees ), but below this value electronic properties of the Lewis base control the 17e/19e dynamics.
View Article and Find Full Text PDFThe exothermic gas-phase bimolecular nucleophilic substitution (S(N)2) reaction Cl(-)+CH(3)Br (upsilon1',upsilon2',upsilon3')-->ClCH(3) (upsilon1,upsilon2,upsilon3)+Br- and the corresponding endothermic reverse reaction have been studied by time-independent quantum scattering calculations in hyperspherical coordinates on a coupled-cluster potential-energy surface. The dimensionality-reduced model takes four degrees of freedom into account [Cl-C and C-Br stretching modes (quantum numbers upsilon3' and upsilon3); totally symmetric modes of the methyl group, i.e.
View Article and Find Full Text PDFThe vibrational resonance states of the complexes formed in the nucleophilic bimolecular substitution (S(N)2) reaction Cl(-)+CH(3)Br-->ClCH(3)+Br(-) were calculated by means of the filter diagonalization method employing a coupled-cluster potential-energy surface and a Hamiltonian that incorporates an optical potential and is formulated in Radau coordinates for the carbon-halogen stretching modes. The four-dimensional model also includes the totally symmetric vibrations of the methyl group (C-H stretch and umbrella bend). The vast majority of bound states and many resonance states up to the first overtone of the symmetric stretching vibration in the exit channel complex have been calculated, analyzed, and assigned four quantum numbers.
View Article and Find Full Text PDFEmploying a 4D CCSD(T) potential energy surface, initial-state selected reaction cross sections for the complex-forming gas-phase identity S(N)2 reaction Cl(-) + CH3Cl' (v1, v2, v3) --> ClCH3 (v'1, v'2, v'3) + Cl'- havebeen calculated by means of time-independent quantum scattering theory in hyperspherical coordinates. The totally symmetric internal modes of the methyl group (C-H stretching vibration, quantum numbers v1 and v'1, and umbrella bending vibration, v2 and v'2) and the two C-Cl stretching modes (v3 and v'3) are included. The results for pure C-Cl stretching excitation in the reactants are similar to those obtained in earlier 2D calculations.
View Article and Find Full Text PDFTime-independent quantum scattering calculations have been carried out on the Walden inversion S(N)2 reaction Cl(-)+CH(3)Cl(')(v(1),v(2),v(3))-->ClCH(3)(v(1) ('),v(2) ('),v(3) ('))+Cl('-). The two C-Cl stretching modes (quantum numbers v(3) and v(3) (')) and the totally symmetric internal modes of the methyl group (C-H stretching vibration, v(1) and v(1) ('), and inversion bending vibration, v(2) and v(2) (')) are treated explicitly. A four-dimensional coupled cluster potential energy surface is employed.
View Article and Find Full Text PDFUnderstanding the state-resolved dynamics of elementary chemical reactions involving polyatomic molecules, such as the well-known reaction mechanism of nucleophilic bimolecular substitution (SN2), is one of the principal goals in chemistry. In this Review, the progress in the quantum mechanical treatment of SN2 reactions in the gas phase is reviewed. The potential energy profile of this class of reactions is characterized by two relatively deep wells, which correspond to pre- and post-reaction chargedipole complexes.
View Article and Find Full Text PDFThe photoinduced (266 nm) ultrafast decarboxylation of the peroxyester tert-butyl 9-methylfluorene-9-percarboxylate (TBFC) in solution has been studied with femtosecond time resolution. While the photodissociation of TBFC occurs too fast to be resolved, the intermediate 9-methylfluorenylcarbonyloxy radical (MeFl-CO(2)) decarboxylates on a picosecond time scale. The latter process is monitored by pump-probe absorption spectroscopy at wavelengths between 400 and 883 nm.
View Article and Find Full Text PDF