Living in an uncertain world, nearly all of our decisions are made with some degree of uncertainty about the consequences of actions selected. Although a significant progress has been made in understanding how the sensorimotor system incorporates uncertainty into the decision-making process, the preponderance of studies focus on tasks in which selection and action are two separate processes. First people select among alternative options and then initiate an action to implement the choice.
View Article and Find Full Text PDFIt has long been hoped that model-based control will improve tracking performance while maintaining or increasing compliance. This hope hinges on having or being able to estimate an accurate inverse dynamics model. As a result, substantial effort has gone into modeling and estimating dynamics (error) models.
View Article and Find Full Text PDFIn the attempt to build adaptive and intelligent machines, roboticists have looked at neuroscience for more than half a century as a source of inspiration for perception and control. More recently, neuroscientists have resorted to robots for testing hypotheses and validating models of biological nervous systems. Here, we give an overview of the work at the intersection of robotics and neuroscience and highlight the most promising approaches and areas where interactions between the two fields have generated significant new insights.
View Article and Find Full Text PDFWe investigate adaptation under a reaching task with an acceleration-based force field perturbation designed to alter the nominal straight hand trajectory in a potentially benign manner: pushing the hand off course in one direction before subsequently restoring towards the target. In this particular task, an explicit strategy to reduce motor effort requires a distinct deviation from the nominal rectilinear hand trajectory. Rather, our results display a clear directional preference during learning, as subjects adapted perturbed curved trajectories towards their initial baselines.
View Article and Find Full Text PDFNonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g.
View Article and Find Full Text PDFHaptics can be defined as the characterization and identification of objects by voluntary exploration and somatosensory feedback. It requires multimodal sensing, motor dexterity, and high levels of cognitive integration with prior experience and fundamental concepts of self versus external world. Humans have unique haptic capabilities that enable tool use.
View Article and Find Full Text PDFFor complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely.
View Article and Find Full Text PDFWe present a novel algorithm for efficient learning and feature selection in high-dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the expectation-maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features.
View Article and Find Full Text PDFAn increasing number of projects in neuroscience require statistical analysis of high-dimensional data, as, for instance, in the prediction of behavior from neural firing or in the operation of artificial devices from brain recordings in brain-machine interfaces. Although prevalent, classical linear analysis techniques are often numerically fragile in high dimensions due to irrelevant, redundant, and noisy information. We developed a robust Bayesian linear regression algorithm that automatically detects relevant features and excludes irrelevant ones, all in a computationally efficient manner.
View Article and Find Full Text PDFAutonomous learning is one of the hallmarks of human and animal behavior, and understanding the principles of learning will be crucial in order to achieve true autonomy in advanced machines like humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs. While supervised learning can offer useful tools for bootstrapping behavior, e.
View Article and Find Full Text PDFIn the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers.
View Article and Find Full Text PDFResearch in robotics has moved away from its primary focus on industrial applications. The New Robotics is a vision that has been developed in past years by our own university and many other national and international research institutions and addresses how increasingly more human-like robots can live among us and take over tasks where our current society has shortcomings. Elder care, physical therapy, child education, search and rescue, and general assistance in daily life situations are some of the examples that will benefit from the New Robotics in the near future.
View Article and Find Full Text PDFComputational models can provide useful guidance in the design of behavioral and neurophysiological experiments and in the interpretation of complex, high dimensional biological data. Because many problems faced by the primate brain in the control of movement have parallels in robotic motor control, models and algorithms from robotics research provide useful inspiration, baseline performance, and sometimes direct analogs for neuroscience.
View Article and Find Full Text PDFLocally weighted projection regression (LWPR) is a new algorithm for incremental nonlinear function approximation in high-dimensional spaces with redundant and irrelevant input dimensions. At its core, it employs nonparametric regression with locally linear models. In order to stay computationally efficient and numerically robust, each local model performs the regression analysis with a small number of univariate regressions in selected directions in input space in the spirit of partial least squares regression.
View Article and Find Full Text PDFWhile the predictive nature of the primate smooth pursuit system has been evident through several behavioural and neurophysiological experiments, few models have attempted to explain these results comprehensively. The model we propose in this paper in line with previous models employing optimal control theory; however, we hypothesize two new issues: (1) the medical superior temporal (MST) area in the cerebral cortex implements a recurrent neural network (RNN) in order to predict the current or future target velocity, and (2) a forward model of the target motion is acquired by on-line learning. We use stimulation studies to demonstrate how our new model supports these hypotheses.
View Article and Find Full Text PDFThis paper introduces a probably stable learning adaptive control framework with statistical learning. The proposed algorithm employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique.
View Article and Find Full Text PDFIn this paper, we present our theoretical investigations of the technique of feedback error learning (FEL) from the viewpoint of adaptive control. We first discuss the relationship between FEL and nonlinear adaptive control with adaptive feedback linearization, and show that FEL can be interpreted as a form of nonlinear adaptive control. Second, we present a Lyapunov analysis suggesting that the condition of strictly positive realness (SPR) associated with the tracking error dynamics is a sufficient condition for asymptotic stability of the closed-loop dynamics.
View Article and Find Full Text PDFRhythmic movements, such as walking, chewing or scratching, are phylogenetically old motor behaviors found in many organisms, ranging from insects to primates. In contrast, discrete movements, such as reaching, grasping or kicking, are behaviors that have reached sophistication primarily in younger species, particularly primates. Neurophysiological and computational research on arm motor control has focused almost exclusively on discrete movements, essentially assuming similar neural circuitry for rhythmic tasks.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
March 2003
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking-indeed, one could argue that we need to understand the complete perception-action loop.
View Article and Find Full Text PDFIn recent years, an increasing number of research projects investigated whether the central nervous system employs internal models in motor control. While inverse models in the control loop can be identified more readily in both motor behavior and the firing of single neurons, providing direct evidence for the existence of forward models is more complicated. In this paper, we will discuss such an identification of forward models in the context of the visuomotor control of an unstable dynamic system, the balancing of a pole on a finger.
View Article and Find Full Text PDFA general theory of movement-pattern perception based on bi-directional theory for sensory-motor integration can be used for motion capture and learning by watching in robotics. We demonstrate our methods using the game of Kendama, executed by the SARCOS Dextrous Slave Arm, which has a very similar kinematic structure to the human arm. Three ingredients have to be integrated for the successful execution of this task.
View Article and Find Full Text PDF