Adequate secondary prevention in survivors of intracerebral hemorrhage (ICH) who also have atrial fibrillation (AF) is a long-standing clinical dilemma because these patients are at increased risk of recurrent ICH as well as of ischemic stroke. The efficacy and safety of oral anticoagulation, the standard preventive medication for ischemic stroke patients with AF, in ICH patients with AF are uncertain. PRESTIGE-AF is an international, phase 3b, multi-center, randomized, open, blinded end-point assessment (PROBE) clinical trial that compared the efficacy and safety of direct oral anticoagulants (DOACs) with no DOAC (either no antithrombotic treatment or any antiplatelet drug).
View Article and Find Full Text PDFBackground: Functional brain alterations in post-Covid-19 condition have been minimally explored to date. Here, we investigate differences in resting-state thalamic functional connectivity among post-Covid patients with and without fatigue, alongside structural brain changes and cognition.
Methods: Thirty-nine post-Covid patients (n = 15 fatigued, n = 24 non-fatigued) participated in our study, undergoing comprehensive cognitive assessments, as well as functional and structural neuroimaging.
Hippocampal atrophy (tissue loss) has become a fundamental outcome parameter in clinical trials on Alzheimer's disease. To accurately estimate hippocampus volume and track its volume loss, a robust and reliable segmentation is essential. Manual hippocampus segmentation is considered the gold standard but is extensive, time-consuming, and prone to rater bias.
View Article and Find Full Text PDFThe interaction between ageing and multiple sclerosis is complex and carries significant implications for patient care. Managing multiple sclerosis effectively requires an understanding of how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion accumulation.
View Article and Find Full Text PDFBackground: Knowledge about factors that are associated with post-stroke cognitive outcome is important to identify patients with high risk for impairment. We therefore investigated the associations of white matter integrity and functional connectivity (FC) within the brain's default-mode network (DMN) in acute stroke patients with cognitive outcome three months post-stroke.
Methods: Patients aged between 18 and 85 years with an acute symptomatic MRI-proven unilateral ischemic middle cerebral artery infarction, who had received reperfusion therapy, were invited to participate in this longitudinal study.
Purpose: QSM provides insight into healthy brain aging and neuropathologies such as multiple sclerosis (MS), traumatic brain injuries, brain tumors, and neurodegenerative diseases. Phase data for QSM are usually acquired from 3D gradient-echo (3D GRE) scans with long acquisition times that are detrimental to patient comfort and susceptible to patient motion. This is particularly true for scans requiring whole-brain coverage and submillimeter resolutions.
View Article and Find Full Text PDFIntroduction: Brain viscoelasticity as assessed by magnetic resonance elastography (MRE) has been discussed as a promising surrogate of microstructural alterations due to neurodegenerative processes. Existing studies indicate that multiple sclerosis (MS) is associated with a global reduction in brain stiffness. However, no study to date systematically investigated the MS-related characteristics of brain viscoelasticity separately in normal-appearing white matter (NAWM), deep gray matter (DGM) and T2-hyperintense white matter (WM) lesions.
View Article and Find Full Text PDFBackground: Limited resources often hinder regular cognitive assessment of people with multiple sclerosis (pwMS) in standard clinical care. A self-administered iPad®-based cognitive screening-tool (Processing Speed Test; PST) might mitigate this problem.
Objective: To evaluate the PST in clinical routine.
Multiple sclerosis (MS) is a prevalent immune-mediated inflammatory disease of the central nervous system inducing a widespread degradation of myelin and resulting in neurological deficits. Recent advances in molecular and atomic imaging provide the means to probe the microenvironment in affected brain tissues at an unprecedented level of detail and may provide new insights. This study showcases state-of-the-art spectroscopic and mass spectrometric techniques to compare distributions of molecular and atomic entities in MS lesions and surrounding brain tissues.
View Article and Find Full Text PDFBackground: Tau pathology correlates with and predicts clinical decline in Alzheimer's disease. Approved tau-targeted therapies are not available.
Methods: ADAMANT, a 24-month randomised, placebo-controlled, parallel-group, double-blinded, multicenter, Phase 2 clinical trial (EudraCT2015-000630-30, NCT02579252) enrolled 196 participants with Alzheimer's disease; 119 are included in this post-hoc subgroup analysis.
Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5-10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm.
View Article and Find Full Text PDFBackground: Besides demographics and clinical factors, psychological variables and brain-tissue changes have been associated with fatigue in persons with multiple sclerosis (pwMS). Identifying predictors of fatigue could help to improve therapeutic approaches for pwMS. Therefore, we investigated predictors of fatigue using a multifactorial approach.
View Article and Find Full Text PDFBackground: Poststroke epilepsy (PSE) represents an important complication of stroke. Data regarding the frequency and predictors of PSE in patients with large-vessel occlusion stroke receiving mechanical thrombectomy (MT) are scarce. Furthermore, information on acute and preexisting lesion characteristics on brain MRI has not yet been systematically considered in risk prediction of PSE.
View Article and Find Full Text PDFIron is known to accumulate in neurological disorders, so a careful balance of the iron concentration is essential for healthy brain functioning. An imbalance in iron homeostasis could arise due to the dysfunction of proteins involved in iron homeostasis. Here, we focus on ferritin-the primary iron storage protein of the brain.
View Article and Find Full Text PDFBackground And Purpose: Serum neurofilament light chain (sNfL) is a promising biomarker of neuroaxonal damage in persons with multiple sclerosis (pwMS). In cross-sectional studies, sNfL has been associated with disease activity and brain magnetic resonance imaging (MRI) changes; however, it is still unclear to what extent in particular high sNfL levels impact on subsequent disease evolution.
Methods: sNfL was quantified by an ultrasensitive single molecule array (Simoa) in 199 pwMS (median age = 34.
This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions.
View Article and Find Full Text PDFDeep neural networks are increasingly used for neurological disease classification by MRI, but the networks' decisions are not easily interpretable by humans. Heat mapping by deep Taylor decomposition revealed that (potentially misleading) image features even outside of the brain tissue are crucial for the classifier's decision. We propose a regularization technique to train convolutional neural network (CNN) classifiers utilizing relevance-guided heat maps calculated online during training.
View Article and Find Full Text PDFBackground Purpose: A substantial number of patients with acute ischemic stroke (AIS) experience multiple acute lesions (MAL). We here aimed to scrutinize MAL in a large radiologically deep-phenotyped cohort.
Materials And Methods: Analyses relied upon imaging and clinical data from the international MRI-GENIE study.