Background: Sepsis is the leading cause of death in the intensive care unit (ICU). Expediting its diagnosis, largely determined by clinical assessment, improves survival. Predictive and explanatory modelling of sepsis in the critically ill commonly bases both outcome definition and predictions on clinical criteria for consensus definitions of sepsis, leading to circularity.
View Article and Find Full Text PDFSepsis is the leading cause of death in non-coronary intensive care units. Moreover, a delay of antibiotic treatment of patients with severe sepsis by only few hours is associated with increased mortality. This insight makes accurate models for early prediction of sepsis a key task in machine learning for healthcare.
View Article and Find Full Text PDFMedical texts are a vast resource for medical and computational research. In contrast to newswire or wikipedia texts medical texts need to be de-identified before making them accessible to a wider NLP research community. We created a prototype for German medical text de-identification and named entity recognition using a three-step approach.
View Article and Find Full Text PDFObjectives: In the Multiple Myeloma clinical registry at Heidelberg University Hospital, most data are extracted from discharge letters. Our aim was to analyze if it is possible to make the manual documentation process more efficient by using methods of natural language processing for multiclass classification of free-text diagnostic reports to automatically document the diagnosis and state of disease of myeloma patients. The first objective was to create a corpus consisting of free-text diagnosis paragraphs of patients with multiple myeloma from German diagnostic reports, and its manual annotation of relevant data elements by documentation specialists.
View Article and Find Full Text PDF