The use of anti-forensic techniques is a very common practice that stealthy adversaries may deploy to minimise their traces and make the investigation of an incident harder by evading detection and attribution. In this paper, we study the interaction between a cyber forensic Investigator and a strategic Attacker using a game-theoretic framework. This is based on a Bayesian game of incomplete information played on a multi-host cyber forensics investigation graph of actions traversed by both players.
View Article and Find Full Text PDFWe consider a formal model of password security, in which two actors engage in a competition of optimal password choice against potential attacks. The proposed model is a multi-objective two-person game. Player 1 seeks an optimal password choice policy, optimizing matters of memorability of the password (measured by Shannon entropy), opposed to the difficulty for player 2 of guessing it (measured by min-entropy), and the cognitive efforts of player 1 tied to changing the password (measured by relative entropy, i.
View Article and Find Full Text PDFAdvanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker's incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense.
View Article and Find Full Text PDFDecisions are often based on imprecise, uncertain or vague information. Likewise, the consequences of an action are often equally unpredictable, thus putting the decision maker into a twofold jeopardy. Assuming that the effects of an action can be modeled by a random variable, then the decision problem boils down to comparing different effects (random variables) by comparing their distribution functions.
View Article and Find Full Text PDF