Solid-state NMR spectra with single-site resolution of CXCR1, a G protein-coupled receptor (GPCR), were obtained in magnetically aligned phospholipid bicelles. These results demonstrate that GPCRs in phospholipid bilayers are suitable samples for structure determination by solid-state NMR. The spectra also enable studies of drug-receptor interactions.
View Article and Find Full Text PDFNMR and CD spectroscopy have been used to characterize, both structurally and dynamically, the 82-amino-acid ParD protein of the post-segregational killing module of the broad-host-range plasmid RP4/RK2. ParD occurs as a dimer in solution and exercises two different control functions; an autoregulatory function by binding to its own promoter P(parDE) and a plasmid-stabilizing function by inhibiting ParE toxicity in cells that express ParD and ParE. Analysis of the secondary structure based on the chemical-shift indices, sequential nuclear Overhauser enhancements (NOEs) and (3)J(Halpha-NH) scalar coupling constants showed that the N-terminal domain of ParD consists of a short beta-ribbon followed by three alpha-helices, demonstrating that ParD contains a ribbon-helix-helix fold, a DNA-binding motif found in a family of small prokaryotic repressors.
View Article and Find Full Text PDF