Publications by authors named "Stefan Prekovic"

The breast epithelium, vital for mammary gland function, is influenced by oestrogen through the oestrogen receptor (ER) signalling pathway. Luminal breast cancer (BC), characterised by ER expression, comprises the majority of all BCs and presents significant clinical challenges due to therapy resistance and recurrence. Despite advancements in understanding luminal disease, improving long-term survival and reducing relapse of BC patients by predicting therapy efficacy and understanding resistance mechanisms remain critical challenges.

View Article and Find Full Text PDF

The cytokine interferon-gamma (IFNγ) plays a multifaceted role in intestinal immune responses ranging from anti- to pro-inflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of IFNγ-exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. IFNγ treatment of organoids led to transcriptional reprogramming, marked by a switch to a pro-inflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11.

View Article and Find Full Text PDF

Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1;Trp53 cells, and find that both follow a similar pattern of loss and spread within ducts.

View Article and Find Full Text PDF

Clinical outcome for patients suffering from HPV-negative head and neck squamous cell carcinoma (HNSCC) remains poor. This is mostly due to highly invasive tumors that cause loco-regional relapses after initial therapeutic intervention and metastatic outgrowth. The molecular pathways governing the detrimental invasive growth modes in HNSCC remain however understudied.

View Article and Find Full Text PDF

Recent work putatively linked a rare genetic variant of the chaperone Resistant to Inhibitors of acetylcholinesterase (RIC3) (NM_024557.4:c.262G > A, NP_078833.

View Article and Find Full Text PDF

Glucocorticoid receptor (GR) is a transcription factor that plays a crucial role in cancer biology. In this study, we utilized an in silico-designed GR activity signature to demonstrate that GR relates to the proliferative capacity of numerous primary cancer types. In breast cancer, the GR activity status determines luminal subtype identity and has implications for patient outcomes.

View Article and Find Full Text PDF

Breast cancer (BCa) is a highly heterogeneous disease, with hormone receptor status being a key factor in patient prognostication and treatment decision-making. The majority of primary tumours are positive for oestrogen receptor alpha (ERα), which plays a key role in tumorigenesis and disease progression, and represents the major target for treatment of BCa. However, around one-third of patients with ERα-positive BCa relapse and progress into the metastatic stage, with 20% of metastatic cases characterised by loss of ERα expression after endocrine treatment, known as ERα-conversion.

View Article and Find Full Text PDF

Acquired drug resistance is a major problem in the treatment of cancer. hTERT-immortalized, untransformed RPE-1 cells can acquire resistance to Taxol by derepressing the ABCB1 gene, encoding for the multidrug transporter P-gP. Here, we investigate how the ABCB1 gene is derepressed.

View Article and Find Full Text PDF

The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing.

View Article and Find Full Text PDF

The crosstalk between prostate cancer (PCa) cells and the tumor microenvironment plays a pivotal role in disease progression and metastasis and could provide novel opportunities for patient treatment. Macrophages are the most abundant immune cells in the prostate tumor microenvironment (TME) and are capable of killing tumor cells. To identify genes in the tumor cells that are critical for macrophage-mediated killing, we performed a genome-wide co-culture CRISPR screen and identified AR, PRKCD, and multiple components of the NF-κB pathway as hits, whose expression in the tumor cell are essential for being targeted and killed by macrophages.

View Article and Find Full Text PDF

How steroid hormone receptors (SHRs) regulate transcriptional activity remains partly understood. Upon activation, SHRs bind the genome together with a co-regulator repertoire, crucial to induce gene expression. However, it remains unknown which components of the SHR-recruited co-regulator complex are essential to drive transcription following hormonal stimuli.

View Article and Find Full Text PDF

Background: The coagulome, defined as the repertoire of genes that locally regulate coagulation and fibrinolysis, is a key determinant of vascular thromboembolic complications of cancer. In addition to vascular complications, the coagulome may also regulate the tumor microenvironment (TME). Glucocorticoids are key hormones that mediate cellular responses to various stresses and exert anti-inflammatory effects.

View Article and Find Full Text PDF

Androgen Receptor (AR) signaling inhibitors, including enzalutamide, are treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC), but resistance inevitably develops. Using metastatic samples from a prospective phase II clinical trial, we epigenetically profiled enhancer/promoter activities with H3K27ac chromatin immunoprecipitation followed by sequencing, before and after AR-targeted therapy. We identified a distinct subset of H3K27ac-differentially marked regions that associated with treatment responsiveness.

View Article and Find Full Text PDF
Article Synopsis
  • DNA damage poses a serious threat to genomic stability and can lead to stem cell failure.
  • Cells use DNA damage tolerance (DDT) mechanisms, regulated by PCNA ubiquitination and REV1, to handle this damage during DNA replication.
  • The study shows that disrupting both PCNA-ubiquitination and REV1 leads to severe consequences, including lethality and accumulation of DNA damage in hematopoietic stem cells, highlighting DDT's vital role in sustaining stem cell health and mammalian survival.
View Article and Find Full Text PDF

The small intestine is a rapidly proliferating organ that is maintained by a small population of Lgr5-expressing intestinal stem cells (ISCs). However, several Lgr5-negative ISC populations have been identified, and this remarkable plasticity allows the intestine to rapidly respond to both the local environment and to damage. However, the mediators of such plasticity are still largely unknown.

View Article and Find Full Text PDF

While endocrine therapy is highly effective for the treatment of oestrogen receptor-α (ERα)-positive breast cancer, a significant number of patients will eventually experience disease progression and develop treatment-resistant, metastatic cancer. The majority of resistant tumours remain dependent on ERα-action, with activating gene mutations occurring in 15-40% of advanced cancers. Therefore, there is an urgent need to discover novel effective therapies that can eradicate cancer cells with aberrant ERα and to understand the cellular response underlying their action.

View Article and Find Full Text PDF

Whereas dimerization of the DNA-binding domain of the androgen receptor (AR) plays an evident role in recognizing bipartite response elements, the contribution of the dimerization of the ligand-binding domain (LBD) to the correct functioning of the AR remains unclear. Here, we describe a mouse model with disrupted dimerization of the AR LBD (AR ). The disruptive effect of the mutation is demonstrated by the feminized phenotype, absence of male accessory sex glands, and strongly affected spermatogenesis, despite high circulating levels of testosterone.

View Article and Find Full Text PDF

The glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive.

View Article and Find Full Text PDF

Glucocorticoid receptor (GR) is a key homeostatic regulator involved in governing immune response, neuro-integration, metabolism and lung function. In conjunction with its pivotal role in human biology, GR action is critically linked to the pathology of various disease types, including cancer. While pharmacological activation of GR has been used for the treatment of various liquid cancers, its role in solid cancers is less clearly defined and seems to be cancer-type dependent.

View Article and Find Full Text PDF

The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin.

View Article and Find Full Text PDF

Estrogen Receptor (ERα) is a hormone-driven transcription factor, critically involved in driving tumor cell proliferation in the vast majority of breast cancers (BCas). ERα binds the genome at cis-regulatory elements, dictating the expression of a large spectrum of responsive genes in 3D genomic space. While initial reports described a rather static ERα chromatin binding repertoire, we now know that ERα DNA interactions are highly versatile, altered in breast tumor development and progression, and deviate between tumors from patients with differential outcome.

View Article and Find Full Text PDF

Estrogen receptor α (ERα) is a key transcriptional regulator in the majority of breast cancers. ERα-positive patients are frequently treated with tamoxifen, but resistance is common. In this study, we refined a previously identified 111-gene outcome prediction-classifier, revealing FEN1 as the strongest determining factor in ERα-positive patient prognostication.

View Article and Find Full Text PDF