Publications by authors named "Stefan Paulus"

Background: This research proposes an easy to apply quality assurance pipeline for hyperspectral imaging (HSI) systems used for plant phenotyping. Furthermore, a concept for the analysis of quality assured hyperspectral images to investigate plant disease progress is proposed. The quality assurance was applied to a handheld line scanning HSI-system consisting of evaluating spatial and spectral quality parameters as well as the integrated illumination.

View Article and Find Full Text PDF

Background: This study addresses the importance of precise referencing in 3-dimensional (3D) plant phenotyping, which is crucial for advancing plant breeding and improving crop production. Traditionally, reference data in plant phenotyping rely on invasive methods. Recent advancements in 3D sensing technologies offer the possibility to collect parameters that cannot be referenced by manual measurements.

View Article and Find Full Text PDF

Fungal infections trigger defense or signaling responses in plants, leading to various changes in plant metabolites. The changes in metabolites, for example chlorophyll or flavonoids, have long been detectable using time-consuming destructive analytical methods including high-performance liquid chromatography or photometric determination. Recent plant phenotyping studies have revealed that hyperspectral imaging (HSI) in the UV range can be used to link spectral changes with changes in plant metabolites.

View Article and Find Full Text PDF

Disease incidence () and metrics of disease severity are relevant parameters for decision making in plant protection and plant breeding. To develop automated and sensor-based routines, a sugar beet variety trial was inoculated with and monitored with a multispectral camera system mounted to an unmanned aerial vehicle (UAV) over the vegetation period. A pipeline based on machine learning methods was established for image data analysis and extraction of disease-relevant parameters.

View Article and Find Full Text PDF

Over the last 20 years, researchers in the field of digital plant pathology have chased the goal to implement sensors, machine learning and new technologies into knowledge-based methods for plant phenotyping and plant protection. However, the application of swiftly developing technologies has posed many challenges. Greenhouse and field applications are complex and differ in their study design requirements.

View Article and Find Full Text PDF

Understanding the growth and development of individual plants is of central importance in modern agriculture, crop breeding, and crop science. To this end, using 3D data for plant analysis has gained attention over the last years. High-resolution point clouds offer the potential to derive a variety of plant traits, such as plant height, biomass, as well as the number and size of relevant plant organs.

View Article and Find Full Text PDF

This work established a hyperspectral library of important foliar diseases of wheat induced by different fungal pathogens, representing a time series from infection to symptom appearance for the purpose of detecting spectral changes. The data were generated under controlled conditions at the leaf scale. The transition from healthy to diseased leaf tissue was assessed, and spectral shifts were identified and used in combination with histological investigations to define developmental stages in pathogenesis for each disease.

View Article and Find Full Text PDF

Background: The use of hyperspectral cameras is well established in the field of plant phenotyping, especially as a part of high-throughput routines in greenhouses. Nevertheless, the workflows used differ depending on the applied camera, the plants being imaged, the experience of the users, and the measurement set-up.

Results: This review describes a general workflow for the assessment and processing of hyperspectral plant data at greenhouse and laboratory scale.

View Article and Find Full Text PDF

Background: The efficient and robust statistical analysis of the shape of plant organs of different cultivars is an important investigation issue in plant breeding and enables a robust cultivar description within the breeding progress. Laserscanning is a highly accurate and high resolution technique to acquire the 3D shape of plant surfaces. The computation of a shape based principal component analysis (PCA) built on concepts from continuum mechanics has proven to be an effective tool for a qualitative and quantitative shape examination.

View Article and Find Full Text PDF

Using 3D sensing for plant phenotyping has risen within the last years. This review provides an overview on 3D traits for the demands of plant phenotyping considering different measuring techniques, derived traits and use-cases of biological applications. A comparison between a high resolution 3D measuring device and an established measuring tool, the leaf meter, is shown to categorize the possible measurement accuracy.

View Article and Find Full Text PDF

Background: Plant organ segmentation from 3D point clouds is a relevant task for plant phenotyping and plant growth observation. Automated solutions are required to increase the efficiency of recent high-throughput plant phenotyping pipelines. However, plant geometrical properties vary with time, among observation scales and different plant types.

View Article and Find Full Text PDF

Accessing a plant's 3D geometry has become of significant importance for phenotyping during the last few years. Close-up laser scanning is an established method to acquire 3D plant shapes in real time with high detail, but it is stationary and has high investment costs. 3D reconstruction from images using structure from motion (SfM) and multi-view stereo (MVS) is a flexible cost-effective method, but requires post-processing procedures.

View Article and Find Full Text PDF

Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm.

View Article and Find Full Text PDF

The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation.

View Article and Find Full Text PDF

Over the last few years, 3D imaging of plant geometry has become of significant importance for phenotyping and plant breeding. Several sensing techniques, like 3D reconstruction from multiple images and laser scanning, are the methods of choice in different research projects. The use of RGBcameras for 3D reconstruction requires a significant amount of post-processing, whereas in this context, laser scanning needs huge investment costs.

View Article and Find Full Text PDF

Laser scanning is a non-invasive method for collecting and parameterizing 3D data of well reflecting objects. These systems have been used for 3D imaging of plant growth and structure analysis. A prerequisite is that the recorded signals originate from the true plant surface.

View Article and Find Full Text PDF

Background: Laserscanning recently has become a powerful and common method for plant parameterization and plant growth observation on nearly every scale range. However, 3D measurements with high accuracy, spatial resolution and speed result in a multitude of points that require processing and analysis. The primary objective of this research has been to establish a reliable and fast technique for high throughput phenotyping using differentiation, segmentation and classification of single plants by a fully automated system.

View Article and Find Full Text PDF