Background: Gene expression and alternative splicing are strictly regulated processes that shape brain development and determine the cellular identity of differentiated neural cell populations. Despite the availability of multiple valuable datasets, many functional implications, especially those related to alternative splicing, remain poorly understood. Moreover, neuroscientists working primarily experimentally often lack the bioinformatics expertise required to process alternative splicing data and produce meaningful and interpretable results.
View Article and Find Full Text PDFMycosis fungoides (MF) is the most common entity of Cutaneous T cell lymphomas (CTCL) and is characterized by the presence of clonal malignant T cells in the skin. The role of the skin microbiome for MF development and progression are currently poorly understood. Using shotgun metagenomic profiling, real-time qPCR, and T cell receptor sequencing, we compared lesional and nonlesional skin of 20 MF patients with early and advanced MF.
View Article and Find Full Text PDFSummary: Oxford Nanopore Technologies' (ONT) sequencing platform offers an excellent opportunity to perform real-time analysis during sequencing. This feature allows for early insights into experimental data and accelerates a potential decision-making process for further analysis, which can be particularly relevant in the clinical context. Although some tools for the real-time analysis of DNA-sequencing data already exist, there is currently no application available for differential transcriptome data analysis designed for scientists or physicians with limited bioinformatics knowledge.
View Article and Find Full Text PDF