Publications by authors named "Stefan Passlick"

Ischemia leads to a severe dysregulation of glutamate homeostasis and excitotoxic cell damage in the brain. Shorter episodes of energy depletion, for instance during peri-infarct depolarizations, can also acutely perturb glutamate signaling. It is less clear if such episodes of metabolic failure also have persistent effects on glutamate signaling and how the relevant mechanisms such as glutamate release and uptake are differentially affected.

View Article and Find Full Text PDF

Ischemia leads to a severe dysregulation of glutamate homeostasis and excitotoxic cell damage in the brain. Shorter episodes of energy depletion, for instance during peri-infarct depolarizations, can also acutely perturb glutamate signaling. It is less clear if such episodes of metabolic failure also have persistent effects on glutamate signaling and how the relevant mechanisms such as glutamate release and uptake are differentially affected.

View Article and Find Full Text PDF

Structural changes of astrocytes and their perisynaptic processes occur in response to various physiological and pathophysiological stimuli. They are thought to profoundly affect synaptic signalling and neuron-astrocyte communication. Understanding the causal relationship between astrocyte morphology changes and their functional consequences requires experimental tools to selectively manipulate astrocyte morphology.

View Article and Find Full Text PDF

The concept of the tripartite synapse describes the close interaction of pre- and postsynaptic elements and the surrounding astrocyte processes. For glutamatergic synapses, it is established that the presence of astrocytic processes and their structural arrangements varies considerably between and within brain regions and between synapses of the same neuron. In contrast, less is known about the organization of astrocytic processes at GABAergic synapses although bi-directional signaling is known to exist at these synapses too.

View Article and Find Full Text PDF

Nerve/glial antigen 2 (NG2) is a protein marker of NG2 glia and mural cells, and NG2 promoter activity is utilized to target these cells. However, the NG2 promoter cannot target NG2 glia and mural cells separately. This has been an obstacle for NG2 glia-specific manipulation.

View Article and Find Full Text PDF

Synaptic and axonal glutamatergic signaling to NG2 glia in white matter is critical for the cells' differentiation and activity dependent myelination. However, in gray matter the impact of neuron-to-NG2 glia signaling is still elusive, because most of these cells keep their non-myelinating phenotype throughout live. Early in postnatal development, hippocampal NG2 glia express AMPA receptors with a significant Ca permeability allowing for plasticity of the neuron-glia synapses, but whether this property changes by adulthood is not known.

View Article and Find Full Text PDF

High-affinity, Na-dependent glutamate transporters are the primary means by which synaptically released glutamate is removed from the extracellular space. They restrict the spread of glutamate from the synaptic cleft into the perisynaptic space and reduce its spillover to neighboring synapses. Thereby, glutamate uptake increases the spatial precision of synaptic communication.

View Article and Find Full Text PDF

Background And Purpose: While the bladder vasculature is considered as a target of PDE5 inhibitors to improve bladder storage dysfunctions, its characteristics are largely unknown. Thus, the functional and morphological properties of arteries/arterioles of the bladder focusing on the NO-mediated signal transmission were explored.

Experimental Approach: Diameter changes in rat bladder arteries/arterioles were measured using a video-tracking system.

View Article and Find Full Text PDF
Article Synopsis
  • Synaptic transmission in the hippocampus relies on astrocyte processes to clear the neurotransmitter glutamate, and the effectiveness of this process varies based on the coverage of individual synapses by astrocytes.
  • Smaller postsynaptic spines receive better protection from excess glutamate due to their stronger coverage by astroglial transporters compared to larger spines.
  • The study suggests that the size of the spine affects its sensitivity to glutamate levels and can influence synaptic communication, with smaller spines being more vulnerable to disruption from excess glutamate.
View Article and Find Full Text PDF

Caged compounds enable fast, light-induced, and spatially-defined application of bioactive molecules to cells. Covalent attachment of a caging chromophore to a crucial functionality of a biomolecule renders it inert, while short pulses of light release the caged molecule in its active form. Caged neurotransmitters have been widely used to study diverse neurobiological processes such as receptor distribution, synaptogenesis, transport, and long-term potentiation.

View Article and Find Full Text PDF

We have developed a caged neurotransmitter using an extended π-electron chromophore for efficient multiphoton uncaging on living neurons. Widely studied in a chemical context, such chromophores are inherently bioincompatible due to their highly lipophilic character. Attachment of two polycarboxylate dendrimers, a method we call "cloaking", to a bisstyrylthiophene (or BIST) core effectively transformed the chromophore into a water-soluble optical probe, whilst maintaining the high two-photon absorption of over 500 GM.

View Article and Find Full Text PDF

Key Points: A new caged nicotinic acetylcholine receptor (nAChR) agonist was developed, ABT594, which is photolysed by one- and two-photon excitation. The caged compound is photolysed with a quantum yield of 0.20.

View Article and Find Full Text PDF

Photoswitchable bioprobes enable bidirectional control of cell physiology with different wavelengths of light. Many current photoswitches use cytotoxic UV light and are limited by the need for constant illumination owing to thermal relaxation in the dark. Now a photoswitchable tetrafluoroazobenzene(4FAB)-based ion channel antagonist has been developed that can be efficiently isomerized in two separate optical channels with visible light.

View Article and Find Full Text PDF

Neuronal cells receive a variety of excitatory and inhibitory signals which they process to generate an output signal. In order to study the interaction between excitatory and inhibitory receptors with exogenously applied transmitters in the same preparation, two caging chromophores attached to glutamate and GABA were developed that were selectively photolyzed by different wavelengths of light. This technique has the advantage that the biologically inactive caged compound can be applied at equilibrium prior to the near instantaneous release of the transmitters.

View Article and Find Full Text PDF

Background: The light-induced release of neurotransmitters from caging chromophores provides a powerful means to study the underlying receptors in a physiologically relevant context. Surprisingly, most caged neurotransmitters, including the widely used 4-methoxy-7-nitroindolinyl (MNI)-glutamate, show strong antagonism against GABA-A receptors. Kainate has been shown to exhibit a higher efficacy at glutamate receptors compared to glutamate itself.

View Article and Find Full Text PDF

Neurotransmitter uncaging, especially that of glutamate, has been used to study synaptic function for over 30 years. One limitation of caged glutamate probes is the blockade of γ-aminobutyric acid (GABA)-A receptor function. This problem comes to the fore when the probes are applied at the high concentrations required for effective two-photon photolysis.

View Article and Find Full Text PDF

A subset of hippocampal GABAergic neurons, which are cholecystokinin-positive, highly express cannabinoid type 1 (CB1) receptors. Activation of these receptors inhibits GABA release and thereby limits inhibitory control. While genetic deletion of CB1 receptors from GABAergic neurons led to behavioural alterations and neuroinflammatory reactions, it remained unclear whether these changes in the knockout animals were a direct consequence of the enhanced transmitter release or reflected developmental deficits.

View Article and Find Full Text PDF

NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron-glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin-neurexin complexes.

View Article and Find Full Text PDF

NG2 cells, a main pool of glial progenitors, express γ-aminobutyric acid A (GABA(A)) receptors (GABA(A)Rs), the functional and molecular properties of which are largely unknown. We recently reported that transmission between GABAergic interneurons and NG2 cells drastically changes during development of the somatosensory cortex, switching from synaptic to extrasynaptic communication. Since synaptic and extrasynaptic GABA(A)Rs of neurons differ in their subunit composition, we hypothesize that GABA(A)Rs of NG2 cells undergo molecular changes during cortical development accompanying the switch of transmission modes.

View Article and Find Full Text PDF

NG2 cells are equipped with transmitter receptors and receive direct synaptic input from glutamatergic and GABAergic neurons. The functional impact of these neuron-glia synapses is still unclear. Here, we combined functional and molecular techniques to analyze properties of GABA(A) receptors in NG2 cells of the juvenile mouse hippocampus.

View Article and Find Full Text PDF