Proc Natl Acad Sci U S A
February 2024
Self-assembly of complex and functional materials remains a grand challenge in soft material science. Efficient assembly depends on a delicate balance between thermodynamic and kinetic effects, requiring fine-tuning affinities and concentrations of subunits. By contrast, we introduce an assembly paradigm that allows large error-tolerance in the subunit affinity and helps avoid kinetic traps.
View Article and Find Full Text PDFSpontaneous liquid-liquid phase separation is commonly understood in terms of phenomenological mean-field theories. These theories correctly predict the structural features of the fluid at sufficiently long time scales and wavelengths. However, these conditions are not met in various examples in biology and materials science where the mixture is slowly destabilised, and phase separation is strongly affected by critical thermal fluctuations.
View Article and Find Full Text PDFWhen colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal.
View Article and Find Full Text PDFWe report on a comprehensive computer simulation study of the liquid-crystal phase behaviour of purely repulsive, semi-flexible rod-like particles. For the four aspect ratios we consider, the particles form five distinct phases depending on their packing fraction and bending flexibility: the isotropic, nematic, smectic A, smectic B, and crystal phase. Upon increasing the particle bending flexibility, the various phase transitions shift to larger packing fractions.
View Article and Find Full Text PDFThe dense packing of interacting particles on spheres has proved to be a useful model for virus capsids and colloidosomes. Indeed, icosahedral symmetry observed in virus capsids corresponds to potential energy minima that occur for magic numbers of, e.g.
View Article and Find Full Text PDFDynamics simulations of constrained particles can greatly aid in understanding the temporal and spatial evolution of biological processes such as lateral transport along membranes and self-assembly of viruses. Most theoretical efforts in the field of diffusive transport have focused on solving the diffusion equation on curved surfaces, for which it is not tractable to incorporate particle interactions even though these play a crucial role in crowded systems. We show here that it is possible to take such interactions into account by combining standard constraint algorithms with the classical velocity Verlet scheme to perform molecular dynamics simulations of particles constrained to an arbitrarily curved surface.
View Article and Find Full Text PDFDensely packed systems of thermal particles in curved geometries are frequently encountered in biological and microfluidic systems. In 2D systems, at sufficiently high surface coverage, diffusive motion is widely known to be strongly affected by physical confinement, e.g.
View Article and Find Full Text PDF