A new metal-free catalysis protocol for the oxidative coupling of nonactivated alkenes with simple carboxylic acids has been established. This method is predicated on the cooperative interaction of a diselane and a photoredox catalyst, which allows for the use of ambient air or pure O2 as the terminal oxidant. Under the title conditions, a range of both functionalized and nonfunctionalized alkenes can be readily converted into the corresponding allylic ester products with good yields (up to 89%) and excellent regioselectivity as well as good functional group tolerance.
View Article and Find Full Text PDFA new selenium-catalyzed protocol for the direct, intramolecular amination of C(sp(2))-H bonds using N-fluorobenzenesulfonimide as the terminal oxidant is reported. This method enables the facile formation of a broad range of diversely functionalized indoles and azaindoles derived from easily accessible ortho-vinyl anilines and vinylated aminopyridines, respectively. The procedure exploits the pronounced carbophilicity of selenium electrophiles for the catalytic activation of alkenes and leads to the formation of C(sp(2))-N bonds in high yields and with excellent functional group tolerance.
View Article and Find Full Text PDF