Although insulin mediated glucose uptake in skeletal muscle is a major mechanism ensuring glucose disposal in humans, glucose effectiveness, i.e., the ability of glucose itself to stimulate its own uptake independent of insulin, accounts for roughly half of the glucose disposed during an oral glucose tolerance test.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) has an important role in cellular energy homeostasis and has emerged as a promising target for treatment of Type 2 Diabetes (T2D) due to its beneficial effects on insulin sensitivity and glucose homeostasis. O304 is a pan-AMPK activator that has been shown to improve glucose homeostasis in both mouse models of diabetes and in human T2D subjects. Here, we describe the genome-wide transcriptional profile and chromatin landscape of pancreatic islets following O304 treatment of mice fed high-fat diet (HFD).
View Article and Find Full Text PDFAsna1, also known as TRC40, is implicated in the delivery of tail-anchored (TA) proteins into the endoplasmic reticulum (ER), in vesicle-mediated transport, and in chaperoning unfolded proteins during oxidative stress/ATP depletion. Here, we show that inactivation in pancreatic progenitor cells leads to redistribution of the Golgi TA SNARE proteins syntaxin 5 and syntaxin 6, Golgi fragmentation, and accumulation of cytosolic p62 puncta. multipotent progenitor cells (MPCs) selectively activate integrated stress response signaling and undergo apoptosis, thereby disrupting endocrine and acinar cell differentiation, resulting in pancreatic agenesis.
View Article and Find Full Text PDFType 2 diabetes (T2D) is characterized by insulin resistance and β-cell failure. Insulin resistance per se, however, does not provoke overt diabetes as long as compensatory β-cell function is maintained. The increased demand for insulin stresses the β-cell endoplasmic reticulum (ER) and secretory pathway, and ER stress is associated with β-cell failure in T2D.
View Article and Find Full Text PDFNotch signaling regulates pancreatic cell differentiation, and mutations of various Notch signaling components result in perturbed pancreas development. Members of the Fringe family of beta1,3-N-acetylglucosaminyltransferases, Manic Fringe (MFng), Lunatic Fringe (LFng), and Radical Fringe (RFng), modulate Notch signaling, and MFng has been suggested to regulate pancreatic endocrine cell differentiation. We have characterized the expression of the three mouse Fringe genes in the developing mouse pancreas between embryonic days 9 and 14 and show that the expression of MFng colocalized with the proendocrine transcription factor Ngn3.
View Article and Find Full Text PDFGlucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells depends on coordinated glucose uptake, oxidative metabolism, and Ca(2+)-triggered insulin exocytosis. Impaired GSIS is a hallmark of type 2 diabetes. However, at present we know very little about the molecular mechanisms that induce and maintain the expression of genes required for GSIS in beta-cells.
View Article and Find Full Text PDF