We present two realizations of an Otto cycle with a quantum planar rotor as the working medium controlled by means of external fields. By comparing the quantum and the classical description of the working medium, we single out genuine quantum effects with regard to the performance and the engine and refrigerator modes of the Otto cycle. The first example is a rotating electric dipole subjected to a controlled electric field, equivalent to a quantum pendulum.
View Article and Find Full Text PDFThe quantum battery capacity is introduced in this Letter as a figure of merit that expresses the potential of a quantum system to store and supply energy. It is defined as the difference between the highest and the lowest energy that can be reached by means of the unitary evolution of the system. This function is closely connected to the ergotropy, but it does not depend on the temporary level of energy of the system.
View Article and Find Full Text PDFRecently, solid-state mechanical resonators have become a platform for demonstrating nonclassical behavior of systems involving a truly macroscopic number of particles. Here, we perform the most macroscopic quantum test in a mechanical resonator to date, which probes the validity of quantum mechanics by ruling out a classical description at the microgram mass scale. This is done by a direct measurement of the Wigner function of a high-overtone bulk acoustic wave resonator mode, monitoring the gradual decay of negativities over tens of microseconds.
View Article and Find Full Text PDFWe present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units. When the units are prepared in a mixture of energy eigenstates, the energy gain in the battery can be described by a classical random walk, where both average energy and variance grow linearly with time. Conversely, when the qubits contain quantum coherence, interference effects buildup in the battery and lead to a faster spreading of the energy distribution, reminiscent of a quantum random walk.
View Article and Find Full Text PDFWe discuss a self-contained spin-boson model for a measurement-driven engine, in which a demon generates work from thermal excitations of a quantum spin via measurement and feedback control. Instead of granting it full direct access to the spin state and to Landauer's erasure strokes for optimal performance, we restrict this demon's action to pointer measurements, i.e.
View Article and Find Full Text PDFWe introduce a general framework for thermometry based on collisional models, where ancillas probe the temperature of the environment through an intermediary system. This allows for the generation of correlated ancillas even if they are initially independent. Using tools from parameter estimation theory, we show through a minimal qubit model that individual ancillas can already outperform the thermal Cramer-Rao bound.
View Article and Find Full Text PDFWe investigate the dynamics of interacting quantum planar rotors as the building blocks of gear trains and nanomachinery operating in the quantum regime. Contrary to a classical hard-gear scenario of rigidly interlocked teeth, we consider the coherent contactless coupling through a finite interlocking potential, and we study the transmission of motion from one externally driven gear to the next as a function of the coupling parameters and gear profile. The transmission is assessed in terms of transferred angular momentum and transferred mechanical work.
View Article and Find Full Text PDFWe study quantum dynamics in the framework of repeated interactions between a system and a stream of identical probes. We present a coarse-grained master equation that captures the system's dynamics in the natural regime where interactions with different probes do not overlap, but it is otherwise valid for arbitrary values of the interaction strength and mean interaction time. We then apply it to some specific examples.
View Article and Find Full Text PDFIn recent years substantial efforts have been expended in extending thermodynamics to single quantum systems. Quantum effects have emerged as a resource that can improve the performance of heat machines. However in the fully quantum regime their implementation still remains a challenge.
View Article and Find Full Text PDFWe investigate the performance of a three-spin quantum absorption refrigerator using a refined open quantum system model valid across all interspin coupling strengths. It describes the transition between previous approximate models for the weak and the ultrastrong coupling limit, and it predicts optimal refrigeration for moderately strong coupling, where both approximations are inaccurate. Two effects impede a more effective cooling: the coupling between the spins no longer reduces to a simple resonant energy exchange (the rotating wave approximation fails), and the interactions with the thermal baths become sensitive to the level splitting, thus opening additional heat channels between the reservoirs.
View Article and Find Full Text PDFThe triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics.
View Article and Find Full Text PDFOptical control of nanoscale objects has recently developed into a thriving field of research with far-reaching promises for precision measurements, fundamental quantum physics and studies on single-particle thermodynamics. Here, we demonstrate the optical manipulation of silicon nanorods in high vacuum. Initially, we sculpture these particles into a silicon substrate with a tailored geometry to facilitate their launch into high vacuum by laser-induced mechanical cleavage.
View Article and Find Full Text PDFMatter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories--conceived to explain the apparent quantum to classical transition--forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm.
View Article and Find Full Text PDFQuantum experiments with nanomechanical oscillators are regarded as a test bed for hypothetical modifications of the Schrödinger equation, which predict a breakdown of the superposition principle and induce classical behavior at the macroscale. It is generally believed that the sensitivity to these unconventional effects grows with the mass of the mechanical quantum system. Here we show that the opposite is the case for optomechanical systems in the presence of generic noise sources, such as thermal and measurement noise.
View Article and Find Full Text PDFLaser cooling has given a boost to atomic physics throughout the last 30 years, as it allows one to prepare atoms in motional states, which can only be described by quantum mechanics. Most methods rely, however, on a near-resonant and cyclic coupling between laser light and well-defined internal states, which has remained a challenge for mesoscopic particles. An external cavity may compensate for the lack of internal cycling transitions in dielectric objects and it may provide assistance in the cooling of their centre-of-mass state.
View Article and Find Full Text PDFWe propose an experimentally accessible, objective measure for the macroscopicity of superposition states in mechanical quantum systems. Based on the observable consequences of a minimal, macrorealist extension of quantum mechanics, it allows one to quantify the degree of macroscopicity achieved in different experiments.
View Article and Find Full Text PDFMatter-wave interferometry with atoms and molecules has attracted a rapidly growing interest throughout the last two decades both in demonstrations of fundamental quantum phenomena and in quantum-enhanced precision measurements. Such experiments exploit the non-classical superposition of two or more position and momentum states which are coherently split and rejoined to interfere. Here, we present the experimental realization of a universal near-field interferometer built from three short-pulse single-photon ionization gratings.
View Article and Find Full Text PDFThe wave nature of matter is a key ingredient of quantum physics and yet it defies our classical intuition. First proposed by Louis de Broglie a century ago, it has since been confirmed with a variety of particles from electrons up to molecules. Here we demonstrate new high-contrast quantum experiments with large and massive tailor-made organic molecules in a near-field interferometer.
View Article and Find Full Text PDF