Antibiotic resistance, particularly among Gram-negative bacteria, poses a significant healthcare challenge due to their ability to evade antibiotic action through various mechanisms. In this study, we explore the prediction of small molecule accumulation in Gram-negative bacteria by using machine learning techniques enhanced with statistical descriptors derived from molecular dynamics simulations. We begin by identifying a minimal set of molecular descriptors that maximize the model's predictive power while preserving human interpretability.
View Article and Find Full Text PDFWe investigated, by using all-atom molecular dynamics simulations, the effect of the outer membrane of Gram-negative bacteria, composed in the outer leaflet by polar/charged lipopolysaccharides (LPS), on the electrostatic properties of general porins from the Enterobacteriaceae family. General porins constitute the main path for the facilitated diffusion of polar antibiotics through the outer membrane. As model system we selected OmpK36 from Klebsiella pneumoniae, the ortholog of OmpC from Escherichia coli.
View Article and Find Full Text PDFCOVID-19, the infectious disease caused by the most recently discovered coronavirus SARS- CoV-2, has caused millions of sick people and thousands of deaths all over the world. The viral positive-sense single-stranded RNA encodes 31 proteins among which the spike (S) is undoubtedly the best known. Recently, protein E has been reputed as a potential pharmacological target as well.
View Article and Find Full Text PDFThe extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component.
View Article and Find Full Text PDFHuman endo-lysosomes possess a class of proteins called TPC channels on their membrane, which are essential for proper cell functioning. This protein family can be functionally studied by expressing them in plant vacuoles. Inhibition of hTPC activity by naringenin, one of the main flavonoids present in the human diet, has the potential to be beneficial in severe human diseases such as solid tumor development, melanoma, and viral infections.
View Article and Find Full Text PDFTransmembrane β-barrel proteins are key systems for transport phenomena in biology. Based on their broad substrate specificity, they represent good candidates for present and future technological applications, such as DNA/RNA and protein sequencing, sensing of biomedical analytes, and production of blue energy. For a better understanding of the process at the molecular level, we applied parallel tempering simulations in the WTE ensemble to compare two β-barrel porins from , OmpF and OmpC.
View Article and Find Full Text PDFIon channels are non-conventional, druggable oncological targets. The intermediate-conductance calcium-dependent potassium channel (K3.1) is highly expressed in the plasma membrane and in the inner mitochondrial membrane (mitoK3.
View Article and Find Full Text PDFEnterobactin (ENT) is a tris-catechol siderophore used to acquire iron by multiple bacterial species. These ENT-dependent iron uptake systems have often been considered as potential gates in the bacterial envelope through which one can shuttle antibiotics (Trojan horse strategy). In practice, siderophore analogues containing catechol moieties have shown promise as vectors to which antibiotics may be attached.
View Article and Find Full Text PDFPassive transport of molecules through nanopores is characterized by the interaction of molecules with pore internal walls and by a general crowding effect due to the constricted size of the nanopore itself, which limits the presence of molecules in its interior. The molecule-pore interaction is treated within the diffusion approximation by introducing the potential of mean force and the local diffusion coefficient for a correct statistical description. The crowding effect can be handled within the Markov state model approximation.
View Article and Find Full Text PDFA distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets.
View Article and Find Full Text PDFSubcellular and organellar mechanisms have manifested a prominent importance for a broad variety of processes that maintain cellular life at its most basic level. Mammalian two-pore channels (TPCs) appear to be cornerstones of these processes in endo-lysosomes by controlling delicate ion-concentrations in their interiors. With evolutionary remarkable architecture and one-of-a-kind selectivity filter, TPCs are an extremely attractive topic per se.
View Article and Find Full Text PDFIn the last decade two-pore intracellular channels (TPCs) attracted the interest of researchers, still some key questions remain open. Their importance for vacuolar (plants) and endo-lysosomal (animals) function highlights them as a very attractive system to study, both theoretically and experimentally. Indicated as key players in the trafficking of the cell, today they are considered a new potential target for avoiding virus infections, including those from coronaviruses.
View Article and Find Full Text PDFBacteria use small molecules called siderophores to scavenge iron. Siderophore-Fe complexes are recognised by outer-membrane transporters and imported into the periplasm in a process dependent on the inner-membrane protein TonB. The siderophore enterobactin is secreted by members of the family Enterobacteriaceae, but many other bacteria including Pseudomonas species can use it.
View Article and Find Full Text PDFNuclear magnetic resonance and infrared spectroscopy have been used to investigate the formation of complexes of BAL30072 with Fe and Ga in solution and to collect geometrical parameters supporting reliable 3D structure models. Structural models for the ligand-metal complexes with different stoichiometries have been characterized using density functional theory calculations. Blind ensemble docking to the PiuA receptor from P.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2018
SecA is an essential part of the Sec pathway for protein secretion in bacteria. In this pathway, SecA interacts with the N-terminal fragment of the secretory protein - the signal peptide, and couples binding and hydrolysis of adenosine triphosphate with movement of the secretory protein across the SecY protein translocon. How interactions with the signal peptide alter the conformational dynamics and long-distance conformational couplings of SecA is a key open question that we address here with molecular dynamics techniques.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2016
SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear.
View Article and Find Full Text PDFChannelrhodopsins are microbial-type rhodopsins that function as light-gated cation channels. Understanding how the detailed architecture of the protein governs its dynamics and specificity for ions is important, because it has the potential to assist in designing site-directed channelrhodopsin mutants for specific neurobiology applications. Here we use bioinformatics methods to derive accurate alignments of channelrhodopsin sequences, assess the sequence conservation patterns and find conserved motifs in channelrhodopsins, and use homology modeling to construct three-dimensional structural models of channelrhodopsins.
View Article and Find Full Text PDF