Publications by authors named "Stefan Mayr"

Hydraulic failure due to drought stress is a major cause of forest decline. Therefore, many techniques have been developed to test the vulnerability of trees to drought-induced xylem embolism, each with advantages and limitations. We quantified drought vulnerability using the optical vulnerability (OV) and ultrasonic acoustic emission (UAE) techniques by performing simultaneous measurements on branches of three conifers (Picea abies, Pinus sylvestris and Pinus cembra).

View Article and Find Full Text PDF

Mangroves are highly salt-tolerant species, which live in saline intertidal environments, but rely on alternative, less saline water to maintain hydraulic integrity and plant productivity. Foliar water uptake (FWU) is thought to assist in hydration of mangroves, particularly during periods of acute water deficit. We investigated the dynamics of FWU in Avicennia marina and Aegiceras corniculatum by submerging and spraying excised branches and measuring leaf water potential (Ψ) at different time intervals.

View Article and Find Full Text PDF

Shape memory hydrogels constitute a highly attractive materials class that bears enormous potential within a broad range of areas - from engineering to medicine. Within the present contribution we demonstrate that energetic electron crosslinked methylcellulose-only hydrogels exhibit an "inverse" shape memory effect that transforms from a secondary shape to its primary shape upon cooling. The primary shape can conveniently be "programmed" by application of energetic electrons.

View Article and Find Full Text PDF

The first year in a tree's life is characterized by distinct morphological changes, requiring constant adjustments of the hydraulic system. Despite their importance for the natural regeneration of forests and future vegetation composition, little has been known about the hydraulics of tree seedlings. At different times across the first growing season, we analysed xylem area-specific (K) and leaf area-specific (K) shoot hydraulic conductance, as well as embolism resistance of three temperate conifer trees, two angiosperm trees and one angiosperm shrub, and related findings to cell osmotic parameters and xylem anatomical traits.

View Article and Find Full Text PDF

As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues.

View Article and Find Full Text PDF

Lichens are a mutualistic symbiosis between a fungus and one or more photosynthetic partners. They are photosynthetically active during desiccation down to relative water contents (RWCs) as low as 30% (on dry mass). Experimental evidence suggests that during desiccation, the photobionts have a higher hydration level than the surrounding fungal pseudo-tissues.

View Article and Find Full Text PDF

Ten MeV electron beam treatment facilitates a biomimetic introduction of cross-links in collagenous biopolymer systems, modifying their viscoelastic properties, mechanical stability, and swelling behavior. For reconstituted collagen type I fibers, electron-induced cross-linking opens up new perspectives regarding future biomedical applications in terms of tissue and ligament engineering. We demonstrate how electron irradiation affects stiffness both in low-strain regimes and in postyield regimes of biocompatible reconstituted rat tail collagen type I fibers.

View Article and Find Full Text PDF

A recent study and related commentaries have raised new interest in the phenomenon of ultrasonic sound production by plants exposed to stress, especially drought. While recent technological advancements have allowed the demonstration that these sounds can propagate in the air surrounding plants, we remind readers here that research on sound production by plants is more than 100 years old. The mechanisms and patterns of sound emission from plants subjected to different stress factors are also reasonably understood, thanks to the pioneering work of John Milburn and others.

View Article and Find Full Text PDF

In recent years, xylem sap composition has been shown to affect xylem hydraulics. However, information on how much xylem sap composition can vary across seasons and specifically under drought stress is still limited. We measured xylem sap chemical composition ([Ca], [K], [Na], electrical conductivity EC and pH) and surface tension () of six Australian angiosperm trees and shrubs over 1 year, which comprised of exceptional dry and wet periods.

View Article and Find Full Text PDF

Freeze-thaw-induced embolism, a key limiting factor for perennial plants results from the formation of gas bubbles during freezing and their expansion during thawing. However, the ice volumetric increase generates local pressures, which can affect the formation of bubbles. To characterize local dynamics of pressure tension and the physical state of the sap during freeze-thaw cycles, we simultaneously used ultrasonic acoustic emission analysis and synchrotron-based high-resolution computed tomography on the diffuse-porous species Betula pendula.

View Article and Find Full Text PDF

Abiotic factors such as water and nutrient availability can exert a dominant influence on the susceptibility of plants to various pathogens. Effects of abiotic environmental factors on phenolic compound concentrations in the plant tissue may represent one of the major underlying mechanisms, as these compounds are known to play a substantial role in plant resistance to pests. In particular, this applies to conifer trees, in which a large range of phenolic compounds are produced constitutively and/or induced by pathogen attack.

View Article and Find Full Text PDF

This study analyses the decision criteria for a specific form of reorganisation in a creditor-friendly bankruptcy system such as that of Austria. From a neoinstitutional perspective, we present different forms of bankruptcy law and the specifics of reorganisation in Austria. Next, we show several distinctive criteria and influencing factors for formal reorganisation and workouts.

View Article and Find Full Text PDF

Foliar water uptake (FWU) is a widespread mechanism that may help plants cope with drought stress in a wide range of ecosystems. FWU can be affected by various leaf traits, which change during leaf development. We exposed cut and dehydrated leaves to rainwater and measured FWU, changes in leaf water potential after 19 h of FWU (ΔΨ), minimum leaf conductance (g ), and leaf wettability (abaxial and adaxial) of leaves of Acer platanoides, Fagus sylvatica, and Sambucus nigra at three developmental stages: unfolding (2-5-day-old), young (1.

View Article and Find Full Text PDF

Rapid prototyping of microfluidic chips is a key enabler for controlled biotechnology applications in microspaces, as it allows for the efficient design and production of microfluidic systems. With rapid prototyping, researchers and engineers can quickly create and test new microfluidic chip designs, which can then be optimized for specific applications in biotechnology. One of the key advantages of microfluidic chips for biotechnology is the ability to manipulate and control biological samples in a microspace, which enables precise and controlled experiments under well-defined conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Iron oxide nanoparticles around 5 nm in size were created by irradiating iron salt micro-emulsions with energetic electrons.
  • At a dose of 50 kGy, superparamagnetic properties began to form, with low crystallinity initially, which improved with higher doses leading to better saturation magnetization.
  • The study also identified the presence of larger particle clusters, ranging from 34 nm to 73 nm, and included observations of magnetite/maghemite nanoparticles and goethite nanowires.
View Article and Find Full Text PDF

Gelatin-based hydrogels are highly desirable biomaterials for use in wound dressing, drug delivery, and extracellular matrix components due to their biocompatibility and biodegradability. However, insufficient and uncontrollable mechanical properties and degradation are the major obstacles to their application in medical materials. Herein, we present a simple but efficient strategy for a novel hydrogel by incorporating the synthetic hydrogel monomer polyethylene glycol diacrylate (PEGDA, offering high mechanical stability) into a biological hydrogel compound (gelatin) to provide stable mechanical properties and biocompatibility at the resulting hybrid hydrogel.

View Article and Find Full Text PDF

Interfacing neurons persistently to conductive matter constitutes one of the key challenges when designing brain-machine interfaces such as neuroelectrodes or retinal implants. Novel materials approaches that prevent occurrence of loss of long-term adhesion, rejection reactions, and glial scarring are highly desirable. Ion doped titania nanotube scaffolds are a promising material to fulfill all these requirements while revealing sufficient electrical conductivity, and are scrutinized in the present study regarding their neuron-material interface.

View Article and Find Full Text PDF

Biopolymer blends are advantageous materials with novel properties that may show performances way beyond their individual constituents. Collagen elastin hybrid gels are a new representative of such materials as they employ elastin's thermo switching behavior in the physiological temperature regime. Although recent studies highlight the potential applications of such systems, little is known about the interaction of collagen and elastin fibers during polymerization.

View Article and Find Full Text PDF

Granular hydrogels have evolved into an innovative technology for biomedicine. Unlike conventional hydrogels, granular hydrogels display dynamic properties like injectability and porosity, making them feasible for applications in 3D bioprinting and tissue engineering. High-energy electron irradiation combines sterilization and tuning of hydrogel properties without adding potentially cytotoxic chemicals.

View Article and Find Full Text PDF

Mountain areas provide essential resources for a significant proportion of the Earth's population. This study presents the development of mountain research between 1900 and 2019 based on peer-reviewed articles in English listed in Web of ScienceTM (WOS). We analyzed the number of publications over time, journals and scientific categories, frequent topics, and geographical distributions based on 40 mountain ranges and authors' countries as well as institutional contributions.

View Article and Find Full Text PDF

During winter, subalpine conifers experience frequent freeze-thaw cycles in stem xylem that may cause embolism and pit aspiration due to increased water volume during the sap to ice transition. This study examined the occurrence and ecological impacts of a combination of freeze-thaw-induced pit aspiration and embolism triggered by natural and artificial stem freezing. In subalpine Veitch's fir (Abies veitchii) trees, the fraction of closed pits and embolized tracheids as well as conductivity losses were measured to examine pit aspiration and its effects.

View Article and Find Full Text PDF

Background: Needle rust caused by the fungus Chrysomyxa rhododendri causes significant growth decline and increased mortality of young Norway spruce trees in subalpine forests. Extremely rare trees with enhanced resistance represent promising candidates for practice-oriented reproduction approaches. They also enable the investigation of tree molecular defence and resistance mechanisms against this fungal disease.

View Article and Find Full Text PDF

Despite recent advances in our understanding of drought impacts on tree functioning, we lack knowledge about the dynamic responses of mature trees to recurrent drought stress. At a subalpine forest site, we assessed the effects of three years of recurrent experimental summer drought on tree growth and water relations of Larix decidua Mill. and Picea abies (L.

View Article and Find Full Text PDF

Leaf water potential (ψ ), typically measured using the pressure chamber, is the most important metric of plant water status, providing high theoretical value and information content for multiple applications in quantifying critical physiological processes including drought responses. Pressure chamber measurements of ψ (ψ ) are most typical, yet, the practical complexity of the technique and of the underlying theory has led to ambiguous understanding of the conditions to optimize measurements. Consequently, specific techniques and precautions diversified across the global research community, raising questions of reliability and repeatability.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6phe6he1o910lvdnrau4r9nat439n2j4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once