Despite substantial advances in many different fields of neurorobotics in general, and biomimetic robots in particular, a key challenge is the integration of concepts: to collate and combine research on disparate and conceptually disjunct research areas in the neurosciences and engineering sciences. We claim that the development of suitable robotic integration platforms is of particular relevance to make such integration of concepts work in practice. Here, we provide an example for a hexapod robotic integration platform for autonomous locomotion.
View Article and Find Full Text PDFWe present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabrication and large surfaces. This technique offers an excellent control of the orientation, shape and nanowires density.
View Article and Find Full Text PDFWe have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena. The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin-polarized current were clearly demonstrated in our electrodeposited NiFe/Cu/ NiFe trilayer nanowires.
View Article and Find Full Text PDFLiquid membrane oscillators very frequently have an irregular oscillatory behavior. Fourier transformation cannot be used for these nonstationary oscillations to establish their power spectra. This important point seems to be overlooked in the field of chemical oscillators.
View Article and Find Full Text PDFA liquid membrane oscillator containing nitromethane as membrane material has been investigated. The influence of substances responsible for taste belonging to four classes (sweetness, saltiness, sourness and bitterness) on oscillation patterns of liquid membrane oscillators with cationic surfactant benzyldimethyltetradecylammonium chloride (BDMTAC) was examined. A new approach based on Gábor transformation is proposed for obtaining the power spectra of the observed oscillating signals and for establishing "fingerprints" of the investigated substances.
View Article and Find Full Text PDF