Publications by authors named "Stefan Marius Buru"

This finite elements analysis (FEA) assessed the accuracy of maximum shear stress criteria (Tresca) in the study of orthodontic internal surface resorption and the absorption-dissipation ability of dental tissues. The present study was conducted over eighty-one models totaling 324 simulations with various bone loss levels (0-8 mm), where 0.6 N and 1.

View Article and Find Full Text PDF

This numerical analysis investigated the biomechanical behavior of the mandibular bone as a structure subjected to 0.5 N of orthodontic force during periodontal breakdown. Additionally, the suitability of the five most used failure criteria (Von Mises (VM), Tresca (T), maximum principal (S1), minimum principal (S3), and hydrostatic pressure (HP)) for the study of bone was assessed, and a single criterion was identified for the study of teeth and the surrounding periodontium (by performing correlations with other FEA studies).

View Article and Find Full Text PDF

This Finite Elements Analysis (FEA) assessed the accuracy of Tresca failure criteria (maximum shear stress) for the study of external root resorption. Additionally, the tooth absorption-dissipation ability was assessed. Overall, 81 models of the second mandibular premolar, out of a total of 324 simulations, were involved.

View Article and Find Full Text PDF

Herein Finite elements analysis (FEA) study assesses the adequacy and accuracy of five failure criteria (Von Mises (VM), Tresca, maximum principal (S1), minimum principal (S3), and Hydrostatic pressure) for the study of tooth as a structure (made of enamel, dentin, and cement), along with its stress absorption-dissipation ability. Eighty-one 3D models of the second lower premolar (with intact and 1-8 mm reduced periodontium) were subjected to five orthodontic forces (intrusion, extrusion, tipping, rotation, and translation) of 0.5 N (approx.

View Article and Find Full Text PDF

This study examines 0.6 N and 1.2 N as the maximum orthodontic force for periodontal ligament (PDL) at multiple levels of periodontal breakdown, and the relationships with the ischemic, necrotic, and resorptive risks.

View Article and Find Full Text PDF

This study examines 0.6 N-4.8 N as the maximum orthodontic force to be applied to dental pulp and apical NVB on intact and 1-8 mm reduced periodontal-ligament (PDL), in connection with movement and ischemic, necrotic and resorptive risk.

View Article and Find Full Text PDF

The aim of this study was to biomechanically assess the behavior of apical neuro-vascular bundles (NVB) and dental pulp employing Tresca, Von Mises, Pressure, S1 and S3 failure criterions in a gradual periodontal breakdown under orthodontic movements. Additionally, it was to assess the accuracy of failure criteria, correlation with the maximum hydrostatic pressure (MHP), and the amount of force safe for reduced periodontium. Based on cone-beam computed tomography, 81 3D models of the second lower premolar were subjected to 0.

View Article and Find Full Text PDF

The accuracy of five failure criterions employed in the study of periodontal ligaments (PDL) during periodontal breakdown under orthodontic movements was assessed. Based on cone-beam computed tomography (CBCT) examinations, nine 3D models of the second lower premolar with intact periodontium were created and individually subjected to various levels of horizontal bone loss. 0.

View Article and Find Full Text PDF

Introduction: This research aimed to assess qualitatively and quantitatively the overall stress in the periodontal ligament during gradual periodontal breakdown (0-8 mm) under orthodontic movements. Correlations between the applied forces, the level of bone loss, the decrease of force magnitude, and the increase of stress were also assessed.

Methods: On the basis of cone-beam computed tomography examinations (voxel size, 0.

View Article and Find Full Text PDF

Introduction: This analysis aimed to assess quantitatively and qualitatively the compressive stress (S3) in periodontal ligament in a gradual periodontal breakdown (0-8 mm) under orthodontic movements. Correlations between the applied forces, the level of bone resorption, the decrease of force magnitude, and S3 increase were also conducted.

Methods: On the basis of cone-beam computed tomography examinations (voxel size, 0.

View Article and Find Full Text PDF

Introduction: To evaluate the stress at the apical third of the pulp and neurovascular bundle (NVB) during 5 types of orthodontic movement at different levels of bone loss. Furthermore, correlations among bone loss, orthodontic appliances, and stress increase were assessed.

Methods: Based on cone-beam computed tomography datasets, 10 models of the mandibular second premolar were created.

View Article and Find Full Text PDF