We present an in-detail description of the design, simulation, fabrication, and packaging of a linear micromirror array specifically designed for temporal pulse shaping of ultrashort laser pulses. The innovative features of this device include a novel comb-drive actuator allowing both piston and tilt motion for phase- and amplitude-shaping, and an X-shaped laterally reinforced spring preventing lateral snap-in while providing high flexibility for both degrees of freedom.
View Article and Find Full Text PDFWe describe the performance of a reflective pulse-shaper based on a Micro-ElectroMechanical System (MEMS) linear mirror array. It represents a substantial upgrade of a preceding release [Opt. Lett.
View Article and Find Full Text PDFWe demonstrate the capabilities of a new optical microelectromechanical systems device that we specifically developed for broadband femtosecond pulse shaping. It consists of a one-dimensional array of 100 independently addressable, high-aspect-ratio micromirrors with up to 3 μm stroke. We apply linear and quadratic phase modulations demonstrating the temporal compression of 800 and 400 nm pulses.
View Article and Find Full Text PDFWe present a routine for calculating and producing customized/parametric femtosecond laser pulses for investigating molecular processes involving the polarization. It is applied on the ionization of NaK molecules by feedback-loop optimization using the recently introduced double-pass "serial setup" that is capable of phase, amplitude, and polarization modulation. The temporal subpulse encoding uses the parameters distance, intensity, zero order spectral phase, and polarization state.
View Article and Find Full Text PDFWe demonstrate the capabilities of the recently introduced interferometric parallel pulse shaper setup and present a method for fully tailoring the three-dimensional electrical field of femtosecond laser pulses. The possibility of producing parametric polarization pulses with arbitrary orientations and ellipticities in time is demonstrated with a selection of example pulses.
View Article and Find Full Text PDFWe present a joint theoretical and experimental study of the maximization of the isotopomer ratio (23)Na(39)K(23)Na(41)K using tailored phase-only as well as amplitude and phase modulated femtosecond laser fields obtained in the framework of optimal control theory and closed loop learning (CLL) technique. A good agreement between theoretically and experimentally optimized pulse shapes is achieved which allows to assign the optimized processes directly to the pulse shapes obtained by the experimental isotopomer selective CLL approach. By analyzing the dynamics induced by the optimized pulses we show that the mechanism involving the dephasing of the wave packets between the isotopomers (23)Na (39)K and (23)Na (41)K on the first excited state is responsible for high isotope selective ionization.
View Article and Find Full Text PDFWe present a shaper scheme that fully controls the spectral phase, amplitude, and polarization of femtosecond laser pulses. In particular, it enables independent manipulation over the major axis orientation and the axis ratio of the polarization ellipse. This is accomplished by integrating a 4f-shaper setup in both arms of a Mach-Zehnder interferometer and rotating the polarization by 90 degrees in one of the arms before overlaying the beams.
View Article and Find Full Text PDFWe study specific properties of different isotopes by applying optimal control. Selective optimization for 23Na39K and 23Na41K isotopes is reported at two different central wavelengths by employing evolutionary strategies on shaped femtosecond laser pulses. The optimized ionization processes exhibit high enhancements of one isotope compared to the other and reversed.
View Article and Find Full Text PDFSelective optimization of the 39,39K2 and 39,41K2 isotopomers in a three-photon ionization process is presented by applying evolution strategies on shaped fs pulses in a feedback loop. The optimizations at different center wavelengths show considerably large enhancements of one isotope compared to the other and reversed. We compare the acquired optimized pulse shapes for combined phase and amplitude with pure amplitude modulation.
View Article and Find Full Text PDFWe report on selective optimization of different isotopes in an ionization process by means of spectrally broad shaped fs-laser pulses. This is demonstrated for (39,39)K2 and (39,41)K2 by applying evolution strategies in a feedback loop, whereby a surprisingly high enhancement of one isotope versus the other and vice versa is achieved (total factor approximately 140). Information about the dynamics on the involved vibrational states is extracted from the optimal pulse shapes, which provides a new spectroscopical approach of yielding distinct frequency pattern on fs-time scales.
View Article and Find Full Text PDF