The Monte Rosa nappe consists of a wide range of lithologies that record conditions associated with peak Alpine metamorphism. While peak temperature conditions inferred from previous studies largely agree, variable peak pressures have been estimated for the Alpine high-pressure metamorphic event. Small volumes of whiteschist lithologies with the assemblage chloritoid + phengite + talc + quartz record peak pressures up to 0.
View Article and Find Full Text PDFPressure-temperature-time paths obtained from minerals in metamorphic rocks allow the reconstruction of the geodynamic evolution of mountain ranges under the assumption that rock pressure is lithostatic. This lithostatic pressure paradigm enables converting the metamorphic pressure directly into the rock's burial depth and, hence, quantifying the rock's burial and exhumation history. In the coherent Monte Rosa tectonic unit, Western Alps, considerably different metamorphic pressures are determined in adjacent rocks.
View Article and Find Full Text PDFStudies of mineral equilibria in metamorphic rocks have given valuable insights into the tectonic processes operating at convergent plate margins during an orogeny. Geodynamic models simulating orogenesis and crustal thickening have been constrained by temperature and pressure estimates inferred from the mineral assemblages of the various lithologies involved along with age constrains from increasingly precise geochronological techniques. During such studies it is assumed that the pressure experienced by a given rock is uniquely related to its depth of burial.
View Article and Find Full Text PDFWe study high-amplitude folding in layered rocks with two-dimensional numerical simulations. We employ the finite-element method to model shortening of an incompressible multi-layer with power-law viscous rheology. The Lagrangian numerical mesh is deformed and re-meshed to accurately follow the layer interfaces.
View Article and Find Full Text PDF