Publications by authors named "Stefan M Goetz"

Background: Electromagnetic forces in transcranial magnetic stimulation (TMS) coils generate a loud clicking sound that produces confounding auditory activation and is potentially hazardous to hearing. To reduce this noise while maintaining stimulation efficiency similar to conventional TMS coils, we previously developed a quiet TMS double containment coil (qTMS-DCC).

Objective: To compare the stimulation strength, perceived loudness, and EEG response between qTMS-DCC and a commercial TMS coil.

View Article and Find Full Text PDF

Background: Electromagnetic forces in transcranial magnetic stimulation (TMS) coils generate a loud clicking sound that produces confounding auditory activation and is potentially hazardous to hearing. To reduce this noise while maintaining stimulation efficiency similar to conventional TMS coils, we previously developed a quiet TMS double containment coil (qTMS-DCC).

Objective: To compare the stimulation strength, perceived loudness, and EEG response between qTMS-DCC and a commercial TMS coil.

View Article and Find Full Text PDF

Registering the head and estimating the scalp surface are important for various biomedical procedures, including those using neuronavigation to localize brain stimulation or recording. However, neuronavigation systems rely on manually-identified fiducial head targets and often require a patient-specific MRI for accurate registration, limiting adoption. We propose a practical technique capable of inferring the scalp shape and use it to accurately register the subject's head.

View Article and Find Full Text PDF

Measurement of the input-output (IO) curves of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) can be used to assess corticospinal excitability and motor recruitment. While IO curves have been used to study disease and pharmacology, few studies have compared the IO curves across the body. This study sought to characterize IO curve parameters across the dominant and non-dominant sides of upper and lower limbs in healthy participants.

View Article and Find Full Text PDF

Introduction: Transcranial magnetic stimulation (TMS) is a popular method for the noninvasive stimulation of neurons in the brain. It has become a standard instrument in experimental brain research and has been approved for a range of diagnostic and therapeutic applications. These applications require appropriately shaped coils.

View Article and Find Full Text PDF

Presents corrections to the paper, (Identifiability Analysis and Noninvasive Online Estimation of the First-Order Neural Activation Dynamics in the Brain With Closed-Loop Transcranial Magnetic Stimulation).

View Article and Find Full Text PDF

Background: Neurons demonstrate very distinct nonlinear activation dynamics, influenced by the neuron type, morphology, ion channel expression, and various other factors. The measurement of the activation dynamics can identify the neural target of stimulation and detect deviations, e.g.

View Article and Find Full Text PDF

. Thresholding of neural responses is central to many applications of transcranial magnetic stimulation (TMS), but the stochastic aspect of neuronal activity and motor evoked potentials (MEPs) challenges thresholding techniques. We analyzed existing methods for obtaining TMS motor threshold and their variations, introduced new methods from other fields, and compared their accuracy and speed.

View Article and Find Full Text PDF

This paper proposes an efficient algorithm for automatic and optimal tuning of pulse amplitude and width for sequential parameter estimation (SPE) of the neural membrane time constant and input-output (IO) curve parameters in closed-loop electromyography-guided (EMG-guided) controllable transcranial magnetic stimulation (cTMS). The proposed SPE is performed by administering a train of optimally tuned TMS pulses and updating the estimations until a stopping rule is satisfied or the maximum number of pulses is reached. The pulse amplitude is computed by the Fisher information maximization.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) with monophasic pulses achieves greater changes in neuronal excitability but requires higher energy and generates more coil heating than TMS with biphasic pulses, and this limits the use of monophasic pulses in rapid-rate protocols. We sought to design a stimulation waveform that retains the characteristics of monophasic TMS but significantly reduces coil heating, thereby enabling higher pulse rates and increased neuromodulation effectiveness.A two-step optimization method was developed that uses the temporal relationship between the electric field (E-field) and coil current waveforms.

View Article and Find Full Text PDF

To obtain a formalism for real-time concurrent sequential estimation of neural membrane time constant and input-output (IO) curve with transcranial magnetic stimulation (TMS).First, the neural membrane response and depolarization factor, which leads to motor evoked potentials with TMS are analytically computed and discussed. Then, an integrated model is developed which combines the neural membrane time constant and IO curve.

View Article and Find Full Text PDF

. Motor-evoked potentials (MEPs) are among the most prominent responses to brain stimulation, such as supra-threshold transcranial magnetic stimulation and electrical stimulation. Understanding of the neurophysiology and the determination of the lowest stimulation strength that evokes responses requires the detection of even smaller responses, e.

View Article and Find Full Text PDF

Precisely timed activation of genetically targeted cells is a powerful tool for the study of neural circuits and control of cell-based therapies. Magnetic control of cell activity, or 'magnetogenetics', using magnetic nanoparticle heating of temperature-sensitive ion channels enables remote, non-invasive activation of neurons for deep-tissue applications and freely behaving animal studies. However, the in vivo response time of thermal magnetogenetics is currently tens of seconds, which prevents precise temporal modulation of neural activity.

View Article and Find Full Text PDF

Objective: Investigate the variability previously found with cortical stimulation and handheld transcranial magnetic stimulation (TMS) coils, criticized for its high potential of coil position fluctuations, bypassing the cortex using deep brain electrical stimulation (DBS) of the corticospinal tract with fixed electrodes where both latent variations of the coil position of TMS are eliminated and cortical excitation fluctuations should be absent.

Methods: Ten input-output curves were recorded from five anesthetized cats with implanted DBS electrodes targeting the corticospinal tract. Goodness of fit of regressions with a conventional single variability source as well as a dual variability source model was quantified using a Schwarz Bayesian Information approach to avoid overfitting.

View Article and Find Full Text PDF

Persons with tetraplegia can use brain-machine interfaces to make visually guided reaches with robotic arms. Without somatosensory feedback, these movements will likely be slow and imprecise, like those of persons who retain movement but have lost proprioception. Intracortical microstimulation (ICMS) has promise for providing artificial somatosensory feedback.

View Article and Find Full Text PDF

Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries.

View Article and Find Full Text PDF

We present a combination of a power electronics system and magnetic nanoparticles that enable frequency-multiplexed magnetothermal-neurostimulation with rapid channel switching between three independent channels spanning a wide frequency range.The electronics system generates alternating magnetic field spanning 50 kHz to 5 MHz in the same coil by combining silicon (Si) and gallium-nitride (GaN) transistors to resolve the high spread of coil impedance and current required throughout the wide bandwidth. The system drives a liquid-cooled field coil via capacitor banks, forming three series resonance channels which are multiplexed using high-voltage contactors.

View Article and Find Full Text PDF

This article presents a novel transcranial magnetic stimulation (TMS) pulse generator with a wide range of pulse shape, amplitude, and width.Based on a modular multilevel TMS (MM-TMS) topology we had proposed previously, we realized the first such device operating at full TMS energy levels. It consists of ten cascaded H-bridge modules, each implemented with insulated-gate bipolar transistors, enabling both novel high-amplitude ultrabrief pulses as well as pulses with conventional amplitude and duration.

View Article and Find Full Text PDF

This paper discusses some of the practical limitations and issues, which exist for the input-output (IO) slope curve estimation (SCE) in neural, brain and spinal, stimulation techniques. The drawbacks of the SCE techniques by using existing uniform sampling and Fisher-information-based optimal IO curve estimation (FO-IOCE) methods are elaborated. A novel IO SCE technique is proposed with a modified sampling strategy and stopping rule which improve the SCE performance compared to these methods.

View Article and Find Full Text PDF

Objective: This work aims to reduce the acoustic noise level of transcranial magnetic stimulation (TMS) coils. TMS requires high currents (several thousand amperes) to be pulsed through the coil, which generates a loud acoustic impulse whose peak sound pressure level (SPL) can exceed 130 dB(Z). This sound poses a risk to hearing and elicits unwanted neural activation of auditory brain circuits.

View Article and Find Full Text PDF

Background: Accurate data on the sound emitted by transcranial magnetic stimulation (TMS) coils is lacking.

Methods: We recorded the sound waveforms of seven coils with high bandwidth. We estimated the neural stimulation strength by measuring the induced electric field and applying a strength-duration model to account for different waveforms.

View Article and Find Full Text PDF

Noninvasive assessments of C-reactive protein (CRP) in stress contexts have seldom been compared. This study evaluated CRP response to acute social stress as measured in saliva and dried blood spot (DBS). African-Americans (N = 118; mean age = 32 years) participated in a laboratory-based social-evaluative stressor task.

View Article and Find Full Text PDF

This erratum provides the link to the software implementation of the algorithm and the examples presented in [1], which was omitted by mistake in the published version of the manuscript. The algorithm was implemented in Matlab and is available online on Code Ocean [2].

View Article and Find Full Text PDF

Motor-evoked potentials (MEPs) are widely used for biomarkers and dose individualization in transcranial stimulation. The large variability of MEPs requires sophisticated methods of analysis to extract information fast and correctly. Development and testing of such methods relies on the availability for realistic models of MEP generation, which are presently lacking.

View Article and Find Full Text PDF

Objective: Robotic positioning systems for transcranial magnetic stimulation (TMS) promise improved accuracy and stability of coil placement, but there is limited data on their performance. Investigate the usability, accuracy, and limitations of robotic coil placement with a commercial system, ANT Neuro, in a TMS study.

Approach: 21 subjects underwent a total of 79 TMS sessions corresponding to 160 hours under robotic coil control.

View Article and Find Full Text PDF