Publications by authors named "Stefan M Edwards"

Hybrid vigour has the potential to substantially increase the yield of self-pollinating crops such as wheat and rice, but future hybrid performance may depend on the initial strategy to form heterotic pools. We used in silico stochastic simulation of future hybrid performance in a self-pollinating crop to evaluate three strategies of forming heterotic pools in the founder population. The model included either 500, 2000 or 8000 quantitative trait nucleotides (QTN) across 10 chromosomes that contributed to a quantitative trait with population mean 100 and variance 10.

View Article and Find Full Text PDF

Genomic selection offers several routes for increasing the genetic gain or efficiency of plant breeding programmes. In various species of livestock, there is empirical evidence of increased rates of genetic gain from the use of genomic selection to target different aspects of the breeder's equation. Accurate predictions of genomic breeding value are central to this, and the design of training sets is in turn central to achieving sufficient levels of accuracy.

View Article and Find Full Text PDF

Canine hip dysplasia, a debilitating orthopedic disorder that leads to osteoarthritis and cartilage degeneration, is common in several large-sized dog breeds and shows moderate heritability suggesting that selection can reduce prevalence. Estimating genomic breeding values require large reference populations, which are expensive to genotype for development of genomic prediction tools. Combining datasets from different countries could be an option to help build larger reference datasets without incurring extra genotyping costs.

View Article and Find Full Text PDF

The genomic best linear unbiased prediction (GBLUP) model has proven to be useful for prediction of complex traits as well as estimation of population genetic parameters. Improved inference and prediction accuracy of GBLUP may be achieved by identifying genomic regions enriched for causal genetic variants. We aimed at searching for patterns in GBLUP-derived single-marker statistics, by including them in genetic marker set tests, that could reveal associations between a set of genetic markers (genomic feature) and a complex trait.

View Article and Find Full Text PDF

Genomic selection uses genome-wide marker information to predict breeding values for traits of economic interest, and is more accurate than pedigree-based methods. The development of high density SNP arrays for Atlantic salmon has enabled genomic selection in selective breeding programs, alongside high-resolution association mapping of the genetic basis of complex traits. However, in sibling testing schemes typical of salmon breeding programs, trait records are available on many thousands of fish with close relationships to the selection candidates.

View Article and Find Full Text PDF

This paper describes AlphaSim, a software package for simulating plant and animal breeding programs. AlphaSim enables the simulation of multiple aspects of breeding programs with a high degree of flexibility. AlphaSim simulates breeding programs in a series of steps: (i) simulate haplotype sequences and pedigree; (ii) drop haplotypes into the base generation of the pedigree and select single-nucleotide polymorphism (SNP) and quantitative trait nucleotide (QTN); (iii) assign QTN effects, calculate genetic values, and simulate phenotypes; (iv) drop haplotypes into the burn-in generations; and (v) perform selection and simulate new generations.

View Article and Find Full Text PDF

Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as genes and their gene ontology categories could increase the accuracy of genomic prediction models.

View Article and Find Full Text PDF

Background: We have used a linear mixed model (LMM) approach to examine the joint contribution of genetic markers associated with a biological pathway. However, with these markers being scattered throughout the genome, we are faced with the challenge of modelling the contribution from several, sometimes even all, chromosomes at once. Due to linkage disequilibrium (LD), all markers may be assumed to account for some genomic variance; but the question is whether random sets of markers account for the same genomic variance as markers associated with a biological pathway?

Results: We applied the LMM approach to identify biological pathways associated with udder health and milk production traits in dairy cattle.

View Article and Find Full Text PDF

Background: Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic profile of genes with respect to their connection to disease phenotypes. The importance of protein-protein interaction networks in the genetic heterogeneity of common diseases or complex traits is becoming increasingly recognized.

View Article and Find Full Text PDF

Identifying causal genes that underlie complex traits such as susceptibility to disease is a primary aim of genetic and biomedical studies. Genetic mapping of quantitative trait loci (QTL) and gene expression profiling based on high-throughput technologies are common first approaches toward identifying associations between genes and traits; however, it is often difficult to assess whether the biological function of a putative candidate gene is consistent with a particular phenotype. Here, we have implemented a network-based disease gene prioritization approach for ranking genes associated with quantitative traits and diseases in livestock species.

View Article and Find Full Text PDF

Background: Bovine mastitis is one of the most costly and prevalent diseases affecting dairy cows worldwide. In order to develop new strategies to prevent Escherichia coli-induced mastitis, a detailed understanding of the molecular mechanisms underlying the host immune response to an E. coli infection is necessary.

View Article and Find Full Text PDF