Publications by authors named "Stefan Loverix"

The therapeutic scope of antibody and nonantibody protein scaffolds is still prohibitively limited against intracellular drug targets. Here, we demonstrate that the Alphabody scaffold can be engineered into a cell-penetrating protein antagonist against induced myeloid leukemia cell differentiation protein MCL-1, an intracellular target in cancer, by grafting the critical B-cell lymphoma 2 homology 3 helix of MCL-1 onto the Alphabody and tagging the scaffold's termini with designed cell-penetration polypeptides. Introduction of an albumin-binding moiety extended the serum half-life of the engineered Alphabody to therapeutically relevant levels, and administration thereof in mouse tumor xenografts based on myeloma cell lines reduced tumor burden.

View Article and Find Full Text PDF

Methodologies to conjugate proteins to property-enhancing entities are highly sought after. We report a remarkably simple strategy for conjugating proteins bearing accessible cysteines to unprotected peptides containing a Cys(Scm) protecting group, which is introduced on-resin via a Cys(Acm) building block. The peptides employed for this proof of principle study are highly varied and structurally diverse, and undergo multiple on-resin decoration steps prior to conjugation.

View Article and Find Full Text PDF

Protein scaffolds can provide a promising alternative to antibodies for various biomedical and biotechnological applications, including therapeutics. Here we describe the design and development of the Alphabody, a protein scaffold featuring a single-chain antiparallel triple-helix coiled-coil fold. We report affinity-matured Alphabodies with favourable physicochemical properties that can specifically neutralize human interleukin (IL)-23, a pivotal therapeutic target in autoimmune inflammatory diseases such as psoriasis and multiple sclerosis.

View Article and Find Full Text PDF

Native mass spectrometry (MS) is a powerful technique for studying noncovalent protein-protein interactions. Here, native MS was employed to examine the noncovalent interactions involved in homodimerization of antibody half molecules (HL) in hinge-deleted human IgG4 (IgG4Δhinge). By analyzing the concentration dependence of the relative distribution of monomer HL and dimer (HL)(2) species, the apparent dissociation constant (K(D)) for this interaction was determined.

View Article and Find Full Text PDF

A distinctive feature of human IgG4 is its ability to recombine half molecules (H chain and attached L chain) through a dynamic process termed Fab-arm exchange, which results in bispecific Abs. It is becoming evident that the process of Fab-arm exchange is conserved in several mammalian species, and thereby represents a mechanism that impacts humoral immunity more generally than previously thought. In humans, Fab-arm exchange has been attributed to the IgG4 core-hinge sequence (226-CPSCP-230) in combination with unknown determinants in the third constant H chain domain (CH3).

View Article and Find Full Text PDF

In this study we constructed two phage libraries displaying non-immunized natural human IgM derived HCDR3 repertoires. One library was structurally constrained by a Gly to Cys substitution at position 104 enabling the formation of a disulfide bridge with the Cys at position 92. Panning of these libraries on an anti-human influenza hemagglutinin (HA) antibody resulted in the selection of 16 different HCDR3 loops displaying different degrees of sequence homology with the HA epitope.

View Article and Find Full Text PDF

The reduction of arsenate to arsenite by pI258 arsenate reductase (ArsC) combines a nucleophilic displacement reaction with a unique intramolecular disulfide cascade. Within this reaction mechanism, the oxidative equivalents are translocated from the active site to the surface of ArsC. The first reaction step in the reduction of arsenate by pI258 ArsC consists of a nucleophilic displacement reaction carried out by Cys10 on dianionic arsenate.

View Article and Find Full Text PDF

It is well documented that helices in proteins can decrease the pKa of residues located at the N-terminus, but the real nature of this perturbation remains unclear. In the present work, the origin of the effect of 3(10)- and alpha-polyalanine helices on the pKa of an N-terminal cysteine residue is examined in gas phase as well as in aqueous solution by means of density functional theory. In a systematic study of the helix dipole, the proton affinity (PA), and the pKa of the N-terminal cysteine, in relation to both the helix length and the strength of the hydrogen bonds between the helix backbone amides and the Sgamma of the N-terminal cysteine, a direct relation between the terminal hydrogen bonds and the pKa perturbation is revealed.

View Article and Find Full Text PDF

The interplay between aromatic stacking and hydrogen bonding in nucleobases has been investigated via high-level quantum chemical calculations. The experimentally observed stacking arrangement between consecutive bases in DNA and RNA/DNA double helices is shown to enhance their hydrogen bonding ability as opposed to gas phase optimized complexes. This phenomenon results from more repulsive electrostatic interactions as is demonstrated in a model system of cytosine stacked offset-parallel with substituted benzenes.

View Article and Find Full Text PDF

In enzymatic depurination of nucleosides, the 5'-OH group of the ribose moiety of the substrate is often shown to contribute substantially to catalysis. The purine-specific nucleoside hydrolase from Trypanosoma vivax (TvNH) fixes the 5'-OH group in a gauche,trans orientation about the C4'-C5' bond, enabling the 5'-oxygen to accept an intramolecular hydrogen bond from the C8-atom of the purine leaving group. High level ab initio quantum chemical calculations indicate that this interaction promotes protonation of the purine at N7.

View Article and Find Full Text PDF

General acid catalysis is a powerful and widely used strategy in enzymatic nucleophilic displacement reactions. For example, hydrolysis/phosphorolysis of the N-glycosidic bond in nucleosides and nucleotides commonly involves the protonation of the leaving nucleobase concomitant with nucleophilic attack. However, in the nucleoside hydrolase of the parasite Trypanosoma vivax, crystallographic and mutagenesis studies failed to identify a general acid.

View Article and Find Full Text PDF

Ribonucleases (RNases) have proven to be excellent model systems for the study of protein structure, folding and stability, and enzyme catalysis, resulting in four Nobel Prize lectures in chemistry. Beside this 'academic' success, RNases are also relevant from a medical point of view. The RNA population in cells is controlled post-transcriptionally by ribonucleases (RNases) of varying specificity.

View Article and Find Full Text PDF

Ribonucleases (RNases) catalyze the cleavage of the phosphodiester bond in RNA up to 10(15)-fold, as compared with the uncatalyzed reaction. High resolution crystal structures of these enzymes in complex with 3'-mononucleotide substrates demonstrate the accommodation of the nucleophilic 2'-OH group in a binding pocket comprising the catalytic base (glutamate or histidine) and a charged hydrogen bond donor (lysine or histidine). Ab initio quantum chemical calculations performed on such Michaelis complexes of the mammalian RNase A (EC ) and the microbial RNase T(1) (EC ) show negative charge build up on the 2'-oxygen upon substrate binding.

View Article and Find Full Text PDF