An important step of the great achievement of organic solar cells in power conversion efficiency is the development of low-band gap polymer donors, PBDB-T derivatives, which present interesting aggregation effects dominating the device performance. The aggregation of polymers can be manipulated by a series of variables from a materials design and processing conditions perspective; however, optimization of film quality is a time- and energy-consuming work. Here, we introduce a robot-based high-throughput platform (HTP) that is offering automated film preparation and optical spectroscopy thin-film characterization in combination with an analysis algorithm.
View Article and Find Full Text PDFStability of perovskite-based photovoltaics remains a topic requiring further attention. Cation engineering influences perovskite stability, with the present-day understanding of the impact of cations based on accelerated ageing tests at higher-than-operating temperatures (e.g.
View Article and Find Full Text PDFFundamental advances to increase the efficiency as well as stability of organic photovoltaics (OPVs) are achieved by designing ternary blends, which represents a clear trend toward multicomponent active layer blends. The development of high-throughput and autonomous experimentation methods is reported for the effective optimization of multicomponent polymer blends for OPVs. A method for automated film formation enabling the fabrication of up to 6048 films per day is introduced.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
Development of high-quality organic nanoparticle inks is a significant scientific challenge for the industrial production of solution-processed organic photovoltaics (OPVs) with eco-friendly processing methods. In this work, we demonstrate a novel, robot-based, high-throughput procedure performing automatic poly(3-hexylthio-phene-2,5-diyl) and indene-C bisadduct nanoparticle ink synthesis in nontoxic alcohols. A novel methodology to prepare particle dispersions for fully functional OPVs by manipulating the particle size and solvent system was studied in detail.
View Article and Find Full Text PDFA novel main-chain polyfullerene, poly[fullerene-alt-2,5-bis(octyloxy)terephthalaldehyde] (PPC4), is investigated for its hypothesized superior morphological stability as an electron-accepting material in organic photovoltaics relative to the widely used fullerene phenyl-C61-butyric acid methyl ester (PCBM). When mixed with poly(3-hexylthiophene-2,5-diyl) (P3HT), PPC4 affords low-charge-generation yields because of poor intermixing within the blend. The adoption of a multiacceptor system, by introducing PCBM into the P3HT:polyfullerene blend, was found to lead to a 3-fold enhancement in charge generation, affording power conversion efficiencies very close to that of the prototypical P3HT:PCBM binary control.
View Article and Find Full Text PDFThe performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark.
View Article and Find Full Text PDFThe solubility of organic semiconductors in environmentally benign solvents is an important prerequisite for the widespread adoption of organic electronic appliances. Solubility can be determined by considering the cohesive forces in a liquid via Hansen solubility parameters (HSP). We report a numerical approach to determine the HSP of fullerenes using a mathematical tool based on artificial neural networks (ANN).
View Article and Find Full Text PDFThe use of additives to improve the performance of organic photovoltaic cells has been intensely researched in recent years. However, so far, no system has been reported for the classification of additives and their functions. In this report, a system for classifying additives according to the fundamental mechanism by which they influence microstructure formation for P3HT:PCBM is suggested.
View Article and Find Full Text PDFIn this work, we report efficient semitransparent perovskite solar cells using solution-processed silver nanowires (AgNWs) as top electrodes. A thin layer of zinc oxide nanoparticles is introduced beneath the AgNWs, which fulfills two essential functionalities: it ensures ohmic contact between the PC60BM and the AgNWs and it serves as a physical foundation that enables the solution-deposition of AgNWs without causing damage to the underlying perovskite. The as-fabricated semitransparent perovskite cells show a high fill factor of 66.
View Article and Find Full Text PDFTher Clin Risk Manag
August 2008
The rising incidence of invasive fungal infections due to the expanding population of immunocompromised hosts and the increasing prevalence of fungal resistance has led to the need for novel antifungal agents. Posaconazole, a new member of the triazole class has demonstrated in vitro activity against a broad spectrum of fungi and clinical activity against various fungal pathogens, including Aspergillus spp., Candida spp.
View Article and Find Full Text PDFInvasive fungal infections (IFI) are a major cause of morbidity and mortality in cancer patients receiving myelotoxic chemotherapy. Established risk factors are previous fungal infection, neutropenia exceeding 10 days, older age, active cancer, corticosteroid therapy, administration of broad spectrum antibiotics, allogeneic HSCT, central venous catheter and organ dysfunction. The strategies to manage IFI comprise chemoprophylaxis, preemptive, empirical and directed antifungal therapy.
View Article and Find Full Text PDF