Bacteria live in environments that are continuously fluctuating and changing. Exploiting any predictability of such fluctuations can lead to an increased fitness. On longer timescales, bacteria can 'learn' the structure of these fluctuations through evolution.
View Article and Find Full Text PDFNeural systems process information in a dynamical regime between silence and chaotic dynamics. This has lead to the criticality hypothesis, which suggests that neural systems reach such a state by self-organizing toward the critical point of a dynamical phase transition. Here, we study a minimal neural network model that exhibits self-organized criticality in the presence of stochastic noise using a rewiring rule which only utilizes local information.
View Article and Find Full Text PDFLarge systems of linear equations are ubiquitous in science. Quite often, e.g.
View Article and Find Full Text PDFWe consider self-tolerance and its failure-autoimmunity-in a minimal mathematical model of the idiotypic network. A node in the network represents a clone of B-lymphocytes and its antibodies of the same idiotype which is encoded by a bitstring. The links between nodes represent possible interactions between clones of almost complementary idiotype.
View Article and Find Full Text PDF