Publications by authors named "Stefan Kronister"

Bioorthogonal bond-cleavage reactions have emerged as a powerful tool for precise spatiotemporal control of (bio)molecular function in the biological context. Among these chemistries, the tetrazine-triggered elimination of cleavable trans-cyclooctenes (click-to-release) stands out due to high reaction rates, versatility, and selectivity. Despite an increasing understanding of the underlying mechanisms, application of this reaction remains limited by the cumulative performance trade-offs (i.

View Article and Find Full Text PDF

BRAF-targeted kinase inhibitors (KIs) are used to treat malignancies including BRAF-mutant non-small cell lung cancer, colorectal cancer, anaplastic thyroid cancer, and, most prominently, melanoma. However, KI selection criteria in patients remain unclear, as are pharmacokinetic/pharmacodynamic (PK/PD) mechanisms that may limit context-dependent efficacy and differentiate related drugs. To address this issue, we imaged mouse models of BRAF-mutant cancers, fluorescent KI tracers, and unlabeled drug to calibrate in silico spatial PK/PD models.

View Article and Find Full Text PDF

We report on the unexpected finding that click modification of iduronyl azides results in a conformational flip of the pyranose ring, which led to the development of a new strategy for the design of superior enzyme substrates for the diagnostic assaying of iduronate-2-sulfatase (I2S), a lysosomal enzyme related to Hunter syndrome. Synthetic substrates are essential in testing newborns for metabolic disorders to enable early initiation of therapy. Our click-flipped iduronyl triazole showed a remarkably better performance with I2S than commonly used -iduronates.

View Article and Find Full Text PDF

Prodrug strategies that facilitate localized and controlled activity of small-molecule therapeutics can reduce systemic exposure and improve pharmacokinetics, yet limitations in activation chemistry have made it difficult to assign tunable multifunctionality to prodrugs. Here, we present the design and application of a modular small-molecule caging strategy that couples bioorthogonal cleavage with a self-immolative linker and an aliphatic anchor. This strategy leverages recently discovered in vivo catalysis by a nanoencapsulated palladium compound (Pd-NP), which mediates alloxylcarbamate cleavage and triggers release of the activated drug.

View Article and Find Full Text PDF

The mixed-metal oxo clusters LnTiO(OPr)(OMc) (Ln = La, Ce; OMc = methacrylate), LnTiO(OMc)(HOPr) (Ln = La, Ce, Nd, Sm) and LnTiO(OMc)(HOMc) (Ln = Sm, Eu, Gd, Ho) have been synthesized from titanium isopropoxide, the corresponding lanthanide acetate and methacrylic acid. The type of cluster obtained strongly depends on the size of the lanthanide ion.

View Article and Find Full Text PDF