Thermal imaging cameras and infrared (IR) temperature measurement devices act as state-of-the-art techniques for non-contact temperature determination of the skin surface. The former is cost-intensive in many cases for widespread application, and the latter requires manual alignment to the measuring point. Due to this background, this paper proposes a new method for automated, non-contact, and area-specific temperature measurement of the facial skin surface.
View Article and Find Full Text PDFSnakes belonging to the genus Naja (Elapid family), also known as "spitting cobras", can spit venom towards the eyes of the predator as a defensive strategy, causing painful and potentially blinding ocular envenoming. Venom ophthalmia is characterized by pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Elapid venom ophthalmia is not well documented and no specific treatment exists.
View Article and Find Full Text PDFOcular irritation testing is a common requirement for the classification, labelling and packaging of chemicals (substances and mixtures). The in vivo Draize rabbit eye test (OECD Test Guideline 405) is considered to be the regulatory reference method for the classification of chemicals according to their potential to induce eye injury. In the Draize test, chemicals are applied to rabbit eyes in vivo, and changes are monitored over time.
View Article and Find Full Text PDFFor improved tumor staging and therapy control, imaging biomarkers are of great interest allowing a noninvasive characterization of invasiveness. In squamous epithelial skin and cervix lesions, transition to invasive stages is associated with enhanced matrix metalloproteinase (MMP) activity, increased angiogenesis, and worsened prognosis. Thus, we investigated MMP activity as imaging biomarker of invasiveness and the potential of optical tomography in characterizing the angiogenic and invasive behavior of skin squamous cell carcinoma (SCC) xenografts.
View Article and Find Full Text PDFElectronically controlled coherent linear optical sampling for low coherence interferometry (LCI) and optical coherence tomography (OCT) is demonstrated, using two turn-key commercial mode-locked fiber lasers with synchronized repetition rates. This novel technique prevents repetition rate limitations present in previous implementations based on asynchronous optical sampling. Adjustable scanning ranges and scanning rates are realized within an interferometric setup by full electronic control of the mutual time delay of the two laser pulse trains.
View Article and Find Full Text PDFA fiber-based spectral domain optical coherence tomography (OCT) system is described, imaging simultaneously at 740 and 1300 nm central wavelengths. Real-time imaging is demonstrated with axial resolutions <3 and <5 microm, respectively. This technique allows for in vivo high-resolution functional OCT imaging with outstanding spectroscopic contrast.
View Article and Find Full Text PDFA time domain optical coherence tomography (OCT) system without moving parts is described, which is based on multiheterodyning utilizing two mode-locked femtosecond lasers. By synchronizing the two lasers to slightly different repetition rates and coupling to an interferometric OCT setup, we obtain amplitude-modulated beat signals representing the structure of the specimen under investigation. Our system is suitable for biological imaging as well as technical applications.
View Article and Find Full Text PDFUltra-high resolution optical coherence tomography (OCT) imaging is demonstrated simultaneously at 840 nm and 1230 nm central wavelength using an off-the-shelf turn-key supercontinuum light source. Spectral filtering of the light source emission results in a double peak spectrum with average powers exceeding 100 mW and bandwidths exceeding 200 nm for each wavelength band. A free-space OCT setup optimized to support both wavelengths in parallel is introduced.
View Article and Find Full Text PDF