: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies.
View Article and Find Full Text PDFBackground: Hepatic stellate cells (HSC) have numerous critical roles in liver function and homeostasis, while they are also known for their importance during liver injury and fibrosis. There is therefore a need for relevant in vitro human HSC models to fill current knowledge gaps. In particular, the roles of vitamin A (VA), lipid droplets (LDs), and energy metabolism in human HSC activation are poorly understood.
View Article and Find Full Text PDFAnal Chem
July 2024
As organoids and organ-on-chip (OoC) systems move toward preclinical and clinical applications, there is an increased need for method validation. Using a liquid chromatography-mass spectrometry (LC-MS)-based approach, we developed a method for measuring small-molecule drugs and metabolites in the cell medium directly sampled from liver organoids/OoC systems. The LC-MS setup was coupled to an automatic filtration and filter flush system with online solid-phase extraction (SPE), allowing for robust and automated sample cleanup/analysis.
View Article and Find Full Text PDFStem cell-derived islets (SC-islets) are not only an unlimited source for cell-based therapy of type 1 diabetes but have also emerged as an attractive material for modeling diabetes and conducting screening for treatment options. Prior to SC-islets becoming the established standard for disease modeling and drug development, it is essential to understand their response to various nutrient sources . This study demonstrates an enhanced efficiency of pancreatic endocrine cell differentiation through the incorporation of WNT signaling inhibition following the definitive endoderm stage.
View Article and Find Full Text PDFNatural frequencies are known to improve performance in Bayesian reasoning. However, their impact in situations with two binary events has not yet been completely examined, as most researchers in the last 30 years focused only on conditional probabilities. Nevertheless, situations with two binary events consist of 16 elementary probabilities and so we widen the scope and focus on joint probabilities.
View Article and Find Full Text PDFIn this study, a novel, high content technique using a cylindrical acoustic transducer, stroboscopic fast imaging, and homodyne detection to recover the mechanical properties (dynamic shear modulus) of living adherent cells at low ultrasonic frequencies is presented. By analyzing the micro-oscillations of cells, whole populations are simultaneously mechanotyped with sub-cellular resolution. The technique can be combined with standard fluorescence imaging allowing to further cross-correlate biological and mechanical information.
View Article and Find Full Text PDFThe generation of insulin-producing cells from human-induced pluripotent stem cells holds great potential for diabetes modeling and treatment. However, existing protocols typically involve incubating cells with un-physiologically high concentrations of glucose, which often fail to generate fully functional IPCs. Here, we investigated the influence of high (20 mM) versus low (5.
View Article and Find Full Text PDFOrganoids are 3D cell cultures with microanatomies mimicking aspects of real organs, useful for e.g. animal-free studies of development, disease, and drug discovery.
View Article and Find Full Text PDFImplantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented.
View Article and Find Full Text PDFPrevious research on Bayesian reasoning has typically investigated people's ability to assess a posterior probability (i.e., a positive predictive value) based on prior knowledge (i.
View Article and Find Full Text PDFSpecific signalling thresholds of the WNT/β-catenin pathway affect embryogenesis and tissue homeostasis in the adult, with mutations in this pathway frequently occurring in cancer. Excessive WNT/β-catenin activity inhibits murine anterior development associated with embryonic lethality and accounts for the driver event in 80% of human colorectal cancers. Uncontrolled WNT/β-catenin signalling arises primarily from impairment mutation in the tumour suppressor gene that otherwise prevents prolonged stabilisation of β-catenin.
View Article and Find Full Text PDFIntra-portal islet transplantation is currently the only clinically approved beta cell replacement therapy, but its outcome is hindered by limited cell survival due to a multifactorial reaction against the allogeneic tissue in liver. Adipose-derived stromal cells (ASCs) can potentially improve the islet micro-environment by their immunomodulatory action. The challenge is to combine both islets and ASCs in a relatively easy and consistent long-term manner in a deliverable scaffold.
View Article and Find Full Text PDFFor studying stem cell-derived islet organoids (SC-islets) in an organ-on-chip (OoC) platform, we have developed a reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method allowing for simultaneous determination of insulin, somatostatin-14, and glucagon, with improved matrix robustness compared to earlier methodology. Combining phenyl/hexyl-C18 separations using 2.1 mm inner diameter LC columns and triple quadrupole mass spectrometry, identification and quantification were secured with negligible variance in retention time and quantifier/qualifier ratios, negligible levels of carryover (<2%), and sufficient precision (±10% RSD) and accuracy (±15% relative error) with and without use of an internal standard.
View Article and Find Full Text PDFThere is a significant need for predictive and stable human liver representations for disease modeling and drug testing. Hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) are important non-parenchymal cell components of the liver and are hence of relevance in a variety of disease models, including hepatic fibrosis. Pluripotent stem cell- (PSC-) derived HSCs (scHSCs) and LSECs (scLSECs) offer an attractive alternative to primary human material; yet, the suitability of scHSCs and scLSECs for extended modeling has not been characterized.
View Article and Find Full Text PDFOrganoids and cells in organ-on-chip platforms replicate higher-level anatomical, physiological, or pathological states of tissues and organs. These technologies are widely regarded by academia, the pharmacological industry and regulators as key biomedical developments. To map advances in this emerging field, a literature analysis of 16,000 article metadata based on a quality-controlled text-mining algorithm is performed.
View Article and Find Full Text PDFOxysterols are potential biomarkers for liver metabolism that are altered under disease conditions such as non-alcoholic fatty liver disease (NAFLD). We here apply sterolomics to organoids used for disease modeling of NAFLD. Using liquid chromatography-mass spectrometry with on-line sample clean-up and enrichment, we establish that liver organoids produce and secrete oxysterols.
View Article and Find Full Text PDFConfocal Raman spectral imaging (RSI) enables high-content, label-free visualization of a wide range of molecules in biological specimens without sample preparation. However, reliable quantification of the deconvoluted spectra is needed. Here we develop an integrated bioanalytical methodology, qRamanomics, to qualify RSI as a tissue phantom calibrated tool for quantitative spatial chemotyping of major classes of biomolecules.
View Article and Find Full Text PDFSkeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to might be limited.
View Article and Find Full Text PDFUnlabelled: The catalytic enzymes tankyrase 1 and 2 (TNKS1/2) alter protein turnover by poly-ADP-ribosylating target proteins, which earmark them for degradation by the ubiquitin-proteasomal system. Prominent targets of the catalytic activity of TNKS1/2 include AXIN proteins, resulting in TNKS1/2 being attractive biotargets for addressing of oncogenic WNT/β-catenin signaling. Although several potent small molecules have been developed to inhibit TNKS1/2, there are currently no TNKS1/2 inhibitors available in clinical practice.
View Article and Find Full Text PDFWe developed a novel, pump-less directional flow recirculating organ-on-a-chip (rOoC) platform that creates controlled unidirectional gravity-driven flow by a combination of a 3D-tilting system and an optimized microfluidic layout. The rOoC platform was assembled utilizing a layer-to-layer fabrication technology based on thermoplastic materials. It features two organoid compartments supported by two independent perfusion channels and separated by a hydrogel barrier.
View Article and Find Full Text PDFOrganoids, i.e., laboratory-grown organ models developed from stem cells, are emerging tools for studying organ physiology, disease modeling, and drug development.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
December 2022
This work demonstrates how a multi-electrode array (MEA) dedicated to four-electrode bioimpedance measurements can be implemented on a complementary metal-oxide-semiconductor (CMOS) chip. As a proof of concept, an 8 × 8 pixel array along with dedicated amplifiers was designed and fabricated in the TSMC 180 nm process. Each pixel in the array contains a circular current carrying (CC) electrode that can act as a current source or sink.
View Article and Find Full Text PDFTypical product development in biotechnological laboratories is a distributed and versatile process. Today's biotechnological laboratory devices are usually equipped with multiple sensors and a variety of interfaces. The existing software for biotechnological research and development is often specialized on specific tasks and thus generates task-specific information.
View Article and Find Full Text PDF