In order to enable future use of aerogels in heterogeneous solid or fluidized bed catalysis a method of production of millimeter sized monolithic Au/AlO aerogel spheres by a continuous flow reactor is developed. Flow velocities and synthesis parameters are optimized to produce aerogel spheres in three different sizes. The resulting aerogel spheres exhibit a porous aluminium oxide aerogel matrix with a large specific surface area of 400 m g on which gold nanoparticles are evenly distributed.
View Article and Find Full Text PDFA novel synthesis method for ordered mesoporous carbons is presented. The inverse replication of a silica template was achieved using the carbonization of sucrose within mesoporous KIT-6. Instead of liquid acid etching, as in classical nanocasting, a novel dry chlorine etching procedure for template removal is presented for the first time.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2015
There is significant interest in high-performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra-hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water-capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g(-1) at P/P0 =0.
View Article and Find Full Text PDF