Publications by authors named "Stefan Kasicki"

High-frequency neuronal population oscillations (HFO, 130-180 Hz) are robustly potentiated by subanesthetic doses of ketamine. This frequency band has been recorded in functionally and neuroanatomically diverse cortical and subcortical regions, notably ventral striatal areas. However, the locus of generation remains largely unknown.

View Article and Find Full Text PDF

Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6-12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined.

View Article and Find Full Text PDF

Rationale: Abnormal oscillatory activity associated with N-methyl-D-aspartate (NMDA) receptor hypofunction is widely considered to contribute to the symptoms of schizophrenia.

Objective: This study aims to characterise the changes produced by NMDA receptor antagonists and antipsychotics on accumbal high-frequency oscillations (HFO; 130-180 Hz) in mice.

Methods: Local field potentials were recorded from the nucleus accumbens of freely moving mice.

View Article and Find Full Text PDF

Background: Altered activity of the nucleus accumbens (NAc) is thought to be a core feature of schizophrenia and animal models of the disease. Abnormal high frequency oscillations (HFO) in the rat NAc have been associated with pharmacological models of schizophrenia, in particular the N-methyl-d-aspartate receptor (NMDAR) hypofunction model. Here, we tested the hypothesis that abnormal HFO are also associated with a neurodevelopmental rat model.

View Article and Find Full Text PDF

Distinct frequency bands can be differentiated from neuronal ensemble recordings, such as local field potentials or electrocorticogram recordings. Recent years have witnessed a rapid acceleration of research examining how N-methyl-D-aspartate receptor (NMDAR) antagonists influence fundamental frequency bands in cortical and subcortical brain regions. Herein, we systematically review findings from in vivo studies with a focus on delta, theta, gamma and more recently identified high-frequency oscillations.

View Article and Find Full Text PDF

The importance of neurotrophin 3 (NT-3) for motor control prompted us to ask the question whether direct electrical stimulation of low-threshold muscle afferents, strengthening the proprioceptive signaling, could effectively increase the endogenous pool of this neurotrophin and its receptor TrkC in the Hoffmann-reflex (H-reflex) circuitry. The effects were compared with those of brain-derived neurotrophic factor (BDNF) and its TrkB receptor. Continuous bursts of stimuli were delivered unilaterally for seven days, 80 min daily, by means of a cuff-electrode implanted over the tibial nerve in awake rats.

View Article and Find Full Text PDF

Rationale: The nucleus accumbens (NAc) is a site critical for the actions of many drugs of abuse. Psychoactive compounds, such as N-methyl-D-aspartate receptor (NMDAR) antagonists, modify gamma (40-90) and high frequency oscillations (HFO, 130-180 Hz) in local field potentials (LFPs) recorded in the NAc. Lysergic acid diethylamide (LSD) and 2,5-dimethoxy-4-iodoamphetamine (DOI) are serotonergic hallucinogens and activation of 5HT2A receptors likely underlies their hallucinogenic effects.

View Article and Find Full Text PDF

Systemic administration of NMDA receptor antagonists, used to model schizophrenia, increase the power of high-frequency oscillations (130-180Hz, HFO) in a variety of neuroanatomical and functionally distinct brain regions. However, it is unclear whether HFO are independently and locally generated or instead spread from a distant source. To address this issue, we used local infusion of tetrodotoxin (TTX) to distinct brain areas to determine how accurately HFO recorded after injection of NMDAR antagonists reflect the activity actually generated at the electrode tip.

View Article and Find Full Text PDF

Improved understanding of the actions of antipsychotic compounds is critical for a better treatment of schizophrenia. Abnormal oscillatory activity has been found in schizophrenia and in rat models of the disease. N-Methyl-D-aspartic acid receptor (NMDAR) antagonists, used to model certain features of schizophrenia, increase the frequency and power of high-frequency oscillations (HFO, 130-180 Hz) in the rat nucleus accumbens, a brain region implicated in schizophrenia pathology.

View Article and Find Full Text PDF

Ketamine, phencyclidine and MK801 are uncompetitive NMDA receptor (NMDAR) antagonists which are used widely to model certain features of schizophrenia in rats. Systemic administration of NMDAR antagonists, in addition to provoking an increase in c-Fos expression, leads to important neurochemical and electrophysiological changes within the medial prefrontal cortex (mPFC). Since the mPFC is considered to exert a top-down regulatory control of subcortical brain regions, we examined the effects of local infusion of the NMDAR antagonist, MK801, into the mPFC on the expression of c-Fos protein (widely used marker of neuronal activation) in several subcortical structures.

View Article and Find Full Text PDF

Altered functioning of the nucleus accumbens (NAc) has been implicated in the psychotomimetic actions of NMDA receptor (NMDAR) antagonists and the pathophysiology of schizophrenia. We have shown previously that NMDAR antagonists enhance the power of high-frequency oscillations (HFO) in the NAc in a dose-dependent manner, as well as increase locomotor activity. Systemic administration of NMDAR antagonists is known to increase the release of dopamine in the NAc and dopamine antagonists can reduce ketamine-induced hyperactivity.

View Article and Find Full Text PDF

Previously, we showed that NMDA antagonists enhance high-frequency oscillations (130-180 Hz) in the nucleus accumbens. However, whether NMDA antagonists can enhance high-frequency oscillations in other brain regions remains unclear. Here, we used monopolar, bipolar and inverse current source density techniques to examine oscillatory activity in the hippocampus, a region known to generate spontaneous ripples (∼200 Hz), its surrounding tissue, and the dorsal striatum, neuroanatomically related to the nucleus accumbens.

View Article and Find Full Text PDF

The effect of stimuli predicting danger (DS) and safety (SS) in Pavlovian aversive conditioning on hippocampal local field potentials (LFP) was studied in 25 partially restrained adult male rats (Long-Evans). DS lasting 5 s preceded tail-shock, while SS overlapping DS during DS last 3 s predicted omission of shock. The power spectra of LFPs during trials were analyzed in theta and delta frequency bands.

View Article and Find Full Text PDF

We reported recently that ketamine can increase the power of high-frequency oscillations (HFO) in the rodent nucleus accumbens (NAc), a region implicated in the pathophysiology of schizophrenia. Lamotrigine is known to reduce several of the abnormal behaviors induced by NMDA receptor antagonists in humans and rodents. This prompted us to examine whether lamotrigine would disrupt ketamine-enhanced HFO.

View Article and Find Full Text PDF

In most neuron models the values of maximal conductances of membrane ionic currents are fixed. In our paper we investigate spiking activity of the neuron model activated tonically by NMDA synapse, when the membrane ionic currents are dynamically dependent on calcium concentration, as in a model by Abbott and coauthors (1993). A spiking neuron model (in Matlab/Simulink environment) is based on the properties of lamprey spinal neurons.

View Article and Find Full Text PDF

A modification of directed transfer function-direct DTF-is proposed for the analysis of direct information transfer among brain structures on the basis of local field potentials (LFP). Comparison of results obtained by the analysis of simulated and experimental data with a new dDTF and DTF method is shown. A new measure to estimate direct causal relations between signals is defined.

View Article and Find Full Text PDF

Human patients suffering from motor paralysis of the leg can learn, to some extent, how to use the transposed antagonistic muscle in place of the damaged or ineffective muscle. Experiments on animals showed opposite results, although in a few experiments the functional reorganization of the activity of the transposed muscle was not excluded. In our experiments, we performed transposition of the soleus (Sol) with a preserved innervation into the bed of the removed extensor digitorum longus (EDL) in 6-d-old pups and 3-month-old rats.

View Article and Find Full Text PDF