Process engineering of biotechnological productions can benefit greatly from comprehensive analysis of microbial physiology and metabolism. Ralstonia eutropha (syn. Cupriavidus necator) is one of the best studied organisms for the synthesis of biodegradable polyhydroxyalkanoate (PHA).
View Article and Find Full Text PDFMicrocystins, cyclic nonribosomal heptapeptides, are the most well-known cyanobacterial toxins. They are exceptionally well studied, but open questions remain concerning their physiological role for the producing microorganism or their suitability as lead compounds for anticancer drug development. One means to study specialized metabolites in more detail is the introduction of functional groups that make a compound amenable for bioorthogonal, so-called click reactions.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters considered as alternatives to petroleum-based plastics. Ralstonia eutropha is a model organism for PHA production. Utilizing industrially rendered waste animal fats as inexpensive carbon feedstocks for PHA production is demonstrated here.
View Article and Find Full Text PDF