Publications by authors named "Stefan Hild"

A silicon nitride micro-ring resonator with a loaded Q factor of 1.4 × 10 at 780 nm wavelength is demonstrated on silicon substrates. This is due to the low propagation loss waveguides achieved by optimization of waveguide sidewall interactions and top cladding refractive index.

View Article and Find Full Text PDF

The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting objects about which we could previously only speculate. Further sensitivity improvements at the low-frequency end of the detection band of future GW observatories must rely on quantum non-demolition (QND) methods to suppress fundamental quantum fluctuations of the light fields used to readout the GW signal. Here we present a novel concept of how to turn a conventional Michelson interferometer into a QND speed-meter interferometer with coherently suppressed quantum back-action noise.

View Article and Find Full Text PDF

We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors.

View Article and Find Full Text PDF

A microelectromechanical system (MEMS) gravimeter has been manufactured with a sensitivity of 40 ppb in an integration time of 1 s. This sensor has been used to measure the Earth tides: the elastic deformation of the globe due to tidal forces. No such measurement has been demonstrated before now with a MEMS gravimeter.

View Article and Find Full Text PDF

The absorption of light in transmissive optics cause a thermally induced effect known as thermal lensing. This effect provokes an often undesired change of a laser beam transmitted by the optic. In this paper we present a measurement method that allows us to determine thermal lensing in commonly used optical components.

View Article and Find Full Text PDF

We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors.

View Article and Find Full Text PDF

We report on the first demonstration of a fully suspended 10 m Fabry-Perot cavity incorporating a waveguide grating as the coupling mirror. The cavity was kept on resonance by reading out the length fluctuations via the Pound-Drever-Hall method and employing feedback to the laser frequency. From the achieved finesse of 790 the grating reflectivity was determined to exceed 99.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a method to measure absorption in the beam splitter of GEO 600 using thermal lensing effects.
  • * They found a bulk absorption rate of less than 0.25 ppm/cm for Suprasil 311 SV at 1064 nm, marking it as the lowest reported absorption in fused silica to date.
View Article and Find Full Text PDF