We demonstrate the first successful functionalization of epitaxial three-dimensional graphene with metal nanoparticles. The functionalization is obtained by immersing three-dimensional graphene in a nanoparticle colloidal solution. This method is versatile and demonstrated here for gold and palladium, but can be extended to other types of nanoparticles.
View Article and Find Full Text PDFInAs quantum wells (QWs) are promising material systems due to their small effective mass, narrow bandgap, strong spin-orbit coupling, large g-factor, and transparent interface to superconductors. Therefore, they are promising candidates for the implementation of topological superconducting states. Despite this potential, the growth of InAs QWs with high crystal quality and well-controlled morphology remains challenging.
View Article and Find Full Text PDFWe report nonreciprocal dissipation-less transport in single ballistic InSb nanoflag Josephson junctions. Applying an in-plane magnetic field, we observe an inequality in supercurrent for the two opposite current propagation directions. Thus, these devices can work as Josephson diodes, with dissipation-less current flowing in only one direction.
View Article and Find Full Text PDFOrganic functionalization of graphene is successfully performed 1,3-dipolar cycloaddition of azomethine ylide in the liquid phase. The comparison between 1-methyl-2-pyrrolidinone and ,-dimethylformamide as dispersant solvents, and between sonication and homogenization as dispersion techniques, proves ,-dimethylformamide and homogenization as the most effective choice. The functionalization of graphene nanosheets and reduced graphene oxide is confirmed using different techniques.
View Article and Find Full Text PDFSetting up strong Josephson coupling in van der Waals materials in close proximity to superconductors offers several opportunities both to inspect fundamental physics and to develop cryogenic quantum technologies. Here we show evidence of Josephson coupling in a planar few-layer black phosphorus junction. The planar geometry allows us to probe the junction behavior by means of external gates, at different carrier concentrations.
View Article and Find Full Text PDFHigh-quality heteroepitaxial two-dimensional (2D) InSb layers are very difficult to realize because of the large lattice mismatch with other widespread semiconductor substrates. A way around this problem is to grow free-standing 2D InSb nanostructures on nanowire (NW) stems, thanks to the capability of NWs to efficiently relax elastic strain along the sidewalls when lattice-mismatched semiconductor systems are integrated. In this work, we optimize the morphology of free-standing 2D InSb nanoflags (NFs).
View Article and Find Full Text PDFSince its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this drawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP.
View Article and Find Full Text PDFThe burgeoning interest in two-dimensional (2D) black phosphorus (bP) contributes to the expansion of its applications in numerous fields. In the present study, 2D bP is used as a support for homogeneously dispersed palladium nanoparticles directly grown on it by a wet chemical process. Electron energy loss spectroscopy-scanning transmission electron microscopy analysis evidences a strong interaction between palladium and P atoms of the bP nanosheets.
View Article and Find Full Text PDFPhosphorene, the 2D material derived from black phosphorus, has recently attracted a lot of interest for its properties, suitable for applications in materials science. The physical features and the prominent chemical reactivity on its surface render this nanolayered substrate particularly promising for electrical and optoelectronic applications. In addition, being a new potential ligand for metals, it opens the way for a new role of the inorganic chemistry in the 2D world, with special reference to the field of catalysis.
View Article and Find Full Text PDFBlack phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) toward both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes (bPn) exhibit a significantly improved stability.
View Article and Find Full Text PDFEvery time a chemical reaction occurs, an energy exchange between reactants and the environment takes place, which is defined as the enthalpy of the reaction. During the last few decades, research has resulted in an increasing number of devices at the micro- or nano-scale. Sensors, catalyzers, and energy storage systems are more and more developed as nano-devices which represent the building blocks for commercial "macroscopic" objects.
View Article and Find Full Text PDFHybrid materials, containing a 2D filler embedded in a polymeric matrix, are an interesting platform for several applications, because of the variety of properties that the filler can impart to the polymer matrix when dispersed at the nanoscale. Moreover, novel properties could arise from the interaction between the two. Mostly the bulk properties of these materials have been studied so far, especially focusing on how the filler changes the polymeric matrix properties.
View Article and Find Full Text PDFNickel nanoparticles were dispersed on the surface of exfoliated black phosphorus and the resulting nanohybrid Ni/2DBP showed an improved stability with respect to pristine 2D BP when kept under ambient conditions in the dark. Ni/2DBP was applied as a catalyst in the semihydrogenation of phenylacetylene and exhibited high conversion and selectivity towards styrene. These features were preserved after recycling tests revealing the high stability of the nanohybrid.
View Article and Find Full Text PDFis shown to be degraded by water. However, the presence of a small amount of water allows the synthesis of high-quality material in liquid exfoliation of black phosphorus using dimethylsulfoxide as solvent. A phosphorus/water molar ratio between 1.
View Article and Find Full Text PDFTransport experiments provide conflicting evidence on the possible existence of fractional order within integer quantum Hall systems. In fact, integer edge states sometimes behave as monolithic objects with no inner structure, while other experiments clearly highlight the role of fractional substructures. Recently developed low-temperature scanning probe techniques offer today an opportunity for a deeper-than-ever investigation of spatial features of such edge systems.
View Article and Find Full Text PDFA method of electrically contacting vertically grown nanowires of uneven heights, a common scenario among as-grown nanowires, is reported here using a chemically synthesized single-crystalline Au microplate as top electrode. The contact is electrically activated and the contact formation is predominantly due to electromigration. With this approach, the electrode could ohmically contact several thousand nanowires at once.
View Article and Find Full Text PDFWe report a novel method for probing the gate-voltage dependence of the surface potential of individual semiconductor nanowires. The statistics of electronic occupation of a single defect on the surface of the nanowire, determined from a random telegraph signal, is used as a measure for the local potential. The method is demonstrated for the case of one or two switching defects in indium arsenide (InAs) nanowire field effect transistors at temperatures T=25-77 K.
View Article and Find Full Text PDFDuring the growth of InAs nanowires from Pd catalyst particles on InAs(111)A substrates, two distinct classes of nanowires are observed with smooth or zigzagged sidewalls. It is shown that this is related to a bimodal distribution of the wire-tip diameter: above a critical diameter wires grow with smooth sidewalls, and below with zigzagged morphology. Transmission electron microscopy analysis shows that the catalyst particles at the tip of zigzagged wires are smooth and have a higher aspect ratio than those at the tip of smooth wires.
View Article and Find Full Text PDFElectron resist behavior of Pd hexadecanethiolate is studied by varying the e-dosage from 2-280 muC.cm(-2). The e-beam exposed resist is characterized using energy dispersive spectroscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy with nanometric lateral resolution.
View Article and Find Full Text PDFWe propose a novel approach to extract quantitative chemical maps of surfaces with nanoscale resolution, from the analysis of data from x-ray photoemission electron microscopy, which is a minimally invasive technique. Our formulation allows us to extract chemical maps from the raw data even in cases when not all experimental parameters are well known or controlled. We illustrate our concept by the analysis of a ternary alloy with a nanoscale pattern, to achieve chemical maps of unprecedented quality.
View Article and Find Full Text PDFThe heteroepitaxial growth of Ge on Au-patterned Si(001) is investigated using in situ spectromicroscopy. Patterning of a hydrogen-terminated Si surface with a square array of Au dots followed by brief exposure to air leads to the spontaneous, local oxidation of Si. The resulting oxide nanopattern limits the surface migration of Au during annealing up to 600 degrees C, resulting in complete preservation of the Au pattern.
View Article and Find Full Text PDFWe demonstrate experimentally the power of a novel analytical tool for X-ray spectromicroscopy. This provides a minimally intrusive elemental mapping of surfaces at the nanoscale and holds the promise of remarkable versatility. We have applied our procedure to the characterization of Ge(Si) islands on Si(111) substrates, with the aim of investigating the surface stoichiometry gradients and gaining insight into the intermixing dynamics.
View Article and Find Full Text PDFThe compositional and structural rearrangements at the catalyst surface during chemical reactions are issues of great importance for understanding and modeling the catalytic processes. Low-energy electron microscopy and photoelectron spectromicroscopy studies of the real-space structure and composition of a Au-modified Rh(110) surface during water formation reveal reorganization processes due to Au mass transport triggered by the propagating reaction fronts. The temporal evolution of the surface reaction results in a 'patterned' surface consisting of separated Au-rich and Au-poor phases with different oxygen coverage, Rh surface structure, and reactivity.
View Article and Find Full Text PDF