Time resolution is crucial in positron emission tomography (PET) to enhance the signal-to-noise ratio and image quality. Moreover, high sensitivity requires long scintillators, which can cause distortions in the reconstructed images due to parallax effects. This study evaluates the performance of a time-of-flight (TOF)-PET module that makes use of a single-side readout of a 4x4 3.
View Article and Find Full Text PDFBackground: Good timing resolution in medical imaging applications such as TOF-CT or TOF-PET can boost image quality or patient comfort significantly by reducing the influence of background noise. However, the timing resolution of state-of-the-art detectors in CT and PET are limited by their light emission process. Core-valence cross-luminescence is an alternative, but well-known compounds (e.
View Article and Find Full Text PDFBackground: Over the past five years, ultrafast high-frequency (HF) readout concepts have advanced the timing performance of silicon photomultipliers (SiPMs). The shown impact in time-of-flight (TOF) techniques can further push the limits in light detection and ranging (LiDAR), time-of-flight positron-emission tomography (TOF-PET), time-of-flight computed tomography (TOF-CT) or high-energy physics (HEP). However, upscaling these electronics to a system-applicable, multi-channel readout, has remained a challenging task, posed by the use of discrete components and a high power consumption.
View Article and Find Full Text PDFRecent SiPM developments and improved front-end electronics have opened new doors in TOF-PET with a focus on prompt photon detection. For instance, the relatively high Cherenkov yield of bismuth-germanate (BGO) upon 511 keV gamma interaction has triggered a lot of interest, especially for its use in total body positron emission tomography (PET) scanners due to the crystal's relatively low material and production costs. However, the electronic readout and timing optimization of the SiPMs still poses many questions.
View Article and Find Full Text PDFBackground: Positron emission tomography (PET) requires a high signal-to-noise ratio (SNR) to improve image quality, with time-of-flight (TOF) being an effective way to boost the SNR. However, the scanner sensitivity and resolution must be maintained. The use of axially aligned 100-mm LYSO:Ce,Ca scintillation crystals with double-sided readout has the potential of ground-breaking TOF and sensitivity, while reducing parallax errors through depth-of-interaction (DOI) estimation, and also allowing a reduction in the number of readout channels required, resulting in cost benefits.
View Article and Find Full Text PDFTogether with novel photodetector technologies and emerging electronic front-end designs, scintillator material research is one of the key aspects to obtain ultra-fast timing in time-of-flight positron emission tomography (TOF-PET). In the late 1990s, Cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) has been established as the state-of-the-art PET scintillator due to its fast decay time, high light yield and high stopping power. It has been shown that co-doping with divalent ions, such as Caand Mg, is beneficial for its scintillation characteristics and timing performance.
View Article and Find Full Text PDFIt is well known that measurement of the time-of-flight (TOF) increases the information provided by coincident events in positron emission tomography (PET). This information increase propagates through the reconstruction and improves the signal-to-noise ratio in the reconstructed images. Takehiro Tomitani has analytically computed the gain in variance in the reconstructed image, provided by a particular TOF resolution, for the center of a uniform disk and for a Gaussian TOF kernel.
View Article and Find Full Text PDFIEEE Trans Radiat Plasma Med Sci
September 2020
Today Time-of-Flight (TOF), in PET scanners, assumes a single, well-defined timing resolution for all events. However, recent BGO-Cherenkov detectors, combining prompt Cherenkov emission and the typical BGO scintillation, can sort events into multiple timing kernels, best described by the Gaussian mixture models. The number of Cherenkov photons detected per event impacts directly the detector time resolution and signal rise time, which can later be used to improve the coincidence timing resolution.
View Article and Find Full Text PDFTime of flight positron emission tomography can strongly benefit from a very accurate time estimator given by Cherenkov radiation, which is produced upon a 511 keV positron-electron annihilation gamma interaction in heavy inorganic scintillators. While time resolution in the order of 30 ps full width at half maximum (FWHM) has been reported using MCP-PMTs and black painted Cherenkov radiators, such solutions have several disadvantages, like high cost and low detection efficiency of nowadays available MCP-PMTs. On the other hand, silicon photomultipliers (SiPMs) are not limited by those obstacles and provide high photon detection efficiency with a decent time response.
View Article and Find Full Text PDFThe challenge to reach 10 ps coincidence time resolution (CTR) in time-of-flight positron emission tomography (TOF-PET) is triggering major efforts worldwide, but timing improvements of scintillation detectors will remain elusive without depth-of-interaction (DOI) correction in long crystals. Nonetheless, this momentum opportunely brings up the prospect of a fully time-based DOI estimation since fast timing signals intrinsically carry DOI information, even with a traditional single-ended readout. Consequently, extracting features of the detected signal time distribution could uncover the spatial origin of the interaction and in return, provide enhancement on the timing precision of detectors.
View Article and Find Full Text PDFSince the seventies, positron emission tomography (PET) has become an invaluable medical molecular imaging modality with an unprecedented sensitivity at the picomolar level, especially for cancer diagnosis and the monitoring of its response to therapy. More recently, its combination with x-ray computed tomography (CT) or magnetic resonance (MR) has added high precision anatomic information in fused PET/CT and PET/MR images, thus compensating for the modest intrinsic spatial resolution of PET. Nevertheless, a number of medical challenges call for further improvements in PET sensitivity.
View Article and Find Full Text PDFBismuth germanate (BGO) shows good properties for positron emission tomography (PET) applications, but was substituted by the development of faster crystals like lutetium oxyorthosilicate (LSO) for time-of-flight PET (TOF-PET). Recent improvements in silicon photomultipliers (SiPMs) and fast readout electronics make it possible to access the Cherenkov photon signal produced upon 511 keV interaction, which makes BGO a cost-effective candidate for TOF-PET. Tails in the time-delay distribution, however, remain a challenge.
View Article and Find Full Text PDFThe silicon photomultiplier (SiPM) is an established device of choice for a variety of applications, e.g. in time of flight positron emission tomography (TOF-PET), lifetime fluorescence spectroscopy, distance measurements in LIDAR applications, astrophysics, quantum-cryptography and related applications as well as in high energy physics (HEP).
View Article and Find Full Text PDFSolid state photodetectors like silicon photomultipliers (SiPMs) are playing an important role in several fields of medical imaging, life sciences and high energy physics. They are able to sense optical photons with a single photon detection time precision below 100 ps, making them ideal candidates to read the photons generated by fast scintillators in time of flight positron emission tomography (TOF-PET). By implementing novel high-frequency readout electronics, it is possible to perform a completely new evaluation of the best timing performance achievable with state-of-the-art analog-SiPMs and scintillation materials.
View Article and Find Full Text PDFScintillator based radiation detectors readout by SiPMs successively break records in their reached time resolution. Nevertheless, new challenges in time of flight positron emission tomography (TOF-PET) and high energy physics are setting unmatched goals in the 10 ps range. Recently it was shown that high frequency (HF) readout of SiPMs significantly improves the measured single photon time resolution (SPTR), allowing to evaluate the intrinsic performance of large area devices; e.
View Article and Find Full Text PDFA key step to improve the coincidence time resolution of positron emission tomography detectors that exploit small populations of promptly emitted photons is improving the single photon time resolution (SPTR) of silicon photomultipliers (SiPMs). The influence of electronic noise has previously been identified as the dominant factor affecting SPTR for large area, analog SiPMs. In this work, we measure the achievable SPTR with front end electronic readout that minimizes the influence of electronic noise.
View Article and Find Full Text PDFHighly luminescent ZnO:Ga-polystyrene composite (ZnO:Ga-PS) with ultrafast subnanosecond decay was prepared by homogeneous embedding the ZnO:Ga scintillating powder into the scintillating organic matrix. The powder was prepared by photo-induced precipitation with subsequent calcination in air and Ar/H atmospheres. The composite was subsequently prepared by mixing the ZnO:Ga powder into the polystyrene (10 wt% fraction of ZnO:Ga) and press compacted to the 1 mm thick pellet.
View Article and Find Full Text PDFThe coincidence time resolution (CTR) of scintillator based detectors commonly used in positron emission tomography is well known to be dependent on the scintillation decay time (τd) and the number of photons detected (n'), i.e. CTR proportional variant √τd/n'.
View Article and Find Full Text PDFThe coincidence time resolution (CTR) becomes a key parameter of 511 keV gamma detection in time of flight positron emission tomography (TOF-PET). This is because additional information obtained through timing leads to a better noise suppression and therefore a better signal to noise ratio in the reconstructed image. In this paper we present the results of CTR measurements on two different SiPM technologies from FBK coupled to LSO:Ce codoped 0.
View Article and Find Full Text PDFThe uncertainty in time of particle detection within a scintillator detector, characterised by the coincidence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no relationship between the CTR and DOI is observed within experimental error.
View Article and Find Full Text PDF