Publications by authors named "Stefan Gnoth"

Background: Currently, the two most commonly used fibrinolytic agents in thrombolytic therapy are recombinant tissue plasminogen activator (rt-PA) and streptokinase (SK). Whereas SK has the advantage of substantially lower costs when compared to other agents, it is less effective than either rt-PA or related variants, has significant allergenic potential, lacks fibrin selectivity and causes transient hypotensive effects in high dosing schedules. Therefore, development of an alternative fibrinolytic agent having superior efficacy to SK, approaching that of rt-PA, together with a similar or enhanced safety profile and advantageous cost-benefit ratio, would be of substantial importance.

View Article and Find Full Text PDF

Recombinant proteins produced in Escherichia coli hosts may appear within the cells' cytoplasm in form of insoluble inclusion bodies (IB's) and/or as dissolved functional protein molecules. If no efficient refolding procedure is available, one is interested in obtaining as much product as possible in its soluble form. Here, we present a process engineering approach to maximizing the soluble target protein fraction.

View Article and Find Full Text PDF

A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed.

View Article and Find Full Text PDF

The current state-of-the-art in control of cultivation processes for recombinant protein production is examined including the quantitative knowledge that can be activated for this purpose and the measurement techniques that can be employed for control at industrial manufacturing sites.

View Article and Find Full Text PDF

Batch-to-batch reproducibility of fermentation processes performed during the manufacturing processes of biologics can be increased by operating the cultures at feed rate profiles that are robust against typically arising disturbances. Remaining randomly appearing deviations from the desired path should be suppressed automatically by manipulating the feed rate. With respect to the cells' physiology it is best guiding the cultivations along an optimal profile of the specific biomass growth rate mu(t).

View Article and Find Full Text PDF

Recombinant protein production processes are typically divided into two phases. In the first one, pure cell propagation takes place, while in the second one product formation is switched on within the cells by adding an inducer. In the initial biomass formation phase, the cell density is rather low and, hence, the measurement quantities that could be used to determine the process' state depict small values and are rather severely distorted by measurement noise.

View Article and Find Full Text PDF

In industry Escherichia coli is the preferred host system for the heterologous biosynthesis of therapeutic proteins that do not need posttranslational modifications. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of a therapeutic hormone is described. The strategy is to guide the process along a predefined profile of the total biomass that was derived from a given specific growth rate profile.

View Article and Find Full Text PDF