Publications by authors named "Stefan Gneiger"

Magnesium alloys play an essential role in metallic lightweight construction for modern mobility applications due to their low density, excellent specific strength, and very good castability. For some years now, degradable implants have also been made from magnesium alloys, which, thanks to this special functionality, save patients a second surgery for explantation. New additive manufacturing processes, which are divided into powder-based and wire-based processes depending on the feedstock used, can be utilized for these applications.

View Article and Find Full Text PDF

The low mass and high specific stiffness of Mg alloys make them particularly interesting as means of transportation. Due to further desirable properties, such as good machinability and excellent castability, Mg alloys have gained acceptance as castings in high-volume applications, such as gearbox housings and automotive steering wheels. However, in forming processes, such as extrusion and forging, Mg alloys find little to no industrial use at the moment.

View Article and Find Full Text PDF

Lean magnesium alloys are considered attractive candidates for easy and economical hot forming. Such wrought alloys, defined here as materials with a maximum alloying content of one atomic or two weight percent, are known to achieve attractive mechanical properties despite their low alloy content. The good mechanical properties and the considerable hardening potential, combined with the ease of processing, make them attractive for manufacturers and users alike.

View Article and Find Full Text PDF

Interest in magnesium alloys and their applications has risen in recent years. This trend is mainly evident in casting applications, but wrought alloys are also increasingly coming into focus. Among the most common forming processes, forging is a promising candidate for the industrial production of magnesium wrought products.

View Article and Find Full Text PDF