Aerospace technologies are crucial for modern civilization; space-based infrastructure underpins weather forecasting, communications, terrestrial navigation and logistics, planetary observations, solar monitoring, and other indispensable capabilities. Extraplanetary exploration-including orbital surveys and (more recently) roving, flying, or submersible unmanned vehicles-is also a key scientific and technological frontier, believed by many to be paramount to the long-term survival and prosperity of humanity. All of these aerospace applications require reliable control of the craft and the ability to record high-precision measurements of physical quantities.
View Article and Find Full Text PDFQuantized vortices are fundamental to the two-dimensional dynamics of superfluids, from quantum turbulence to phase transitions. However, surface effects have prevented direct observations of coherent two-dimensional vortex dynamics in strongly interacting systems. Here, we overcome this challenge by confining a thin film of superfluid helium at microscale on the atomically smooth surface of a silicon chip.
View Article and Find Full Text PDFNitrogen (N) inputs from atmospheric deposition can increase soil organic carbon (SOC) storage in temperate and boreal forests, thereby mitigating the adverse effects of anthropogenic CO emissions on global climate. However, direct evidence of N-induced SOC sequestration from low-dose, long-term N addition experiments (that is, addition of < 50 kg N ha y for > 10 years) is scarce worldwide and virtually absent for European temperate forests. Here, we examine how tree growth, fine roots, physicochemical soil properties as well as pools of SOC and soil total N responded to 20 years of regular, low-dose N addition in two European coniferous forests in Switzerland and Denmark.
View Article and Find Full Text PDFUltrasound sensors have wide applications across science and technology. However, improved sensitivity is required for both miniaturisation and increased spatial resolution. Here, we introduce cavity optomechanical ultrasound sensing, where dual optical and mechanical resonances enhance the ultrasound signal.
View Article and Find Full Text PDFCavity optomechanical magnetic field sensors, constructed by coupling a magnetostrictive material to a micro-toroidal optical cavity, act as ultra-sensitive room temperature magnetometers with tens of micrometre size and broad bandwidth, combined with a simple operating scheme. Here, we develop a general recipe for predicting the field sensitivity of these devices. Several geometries are analysed, with a highest predicted sensitivity of 180 p T / Hz at 28 μ m resolution limited by thermal noise in good agreement with previous experimental observations.
View Article and Find Full Text PDFA cavity optomechanical magneto-meter operating in the 100 pT range is reported. The device operates at earth field, achieves tens of megahertz bandwidth with 60 μm spatial resolution and microwatt optical-power requirements. These unique capabilities may have a broad range of applications including cryogen-free and microfluidic magnetic resonance imaging (MRI), and investigation of spin-physics in condensed matter systems.
View Article and Find Full Text PDF