Publications by authors named "Stefan Enoch"

The near-field interaction between quantum emitters, governed by Förster resonance energy transfer (FRET), plays a pivotal role in nanoscale energy transfer mechanisms. However, FRET measurements in the optical regime are challenging as they require nanoscale control of the position and orientation of the emitters. To overcome these challenges, microwave measurements were proposed for enhanced spatial resolution and precise orientation control.

View Article and Find Full Text PDF

This paper demonstrates whispering gallery mode (WGM) resonance with the help of an encaved optical nano-probe developed inside an optical fiber tip cavity. The nano-probe generates a tightly focused beam with a spot-size of ∼3 µm. A barium titanate microsphere is placed besides the optical axis inside the cavity.

View Article and Find Full Text PDF

Purpose: The use of dielectric pads to redistribute the radiofrequency fields is currently a popular solution for 7 T MRI practical applications, especially in brain imaging. In this work, we tackle several downsides of the previous generation of dielectric pads. This new silicon carbide recipe makes them MR invisible and greatly extends the performance lifespan.

View Article and Find Full Text PDF

In this paper we address the possibility to perform imaging of two samples within the same acquisition time using coupled ceramic resonators and one transmit/receive channel. We theoretically and experimentally compare the operation of our ceramic dual-resonator probe with a wire-wound solenoid probe, which is the standard probe used in ultrahigh-field magnetic resonance microscopy. We show that due to the low-loss ceramics used to fabricate the resonators, and a favorable distribution of the electric field within the conducting sample, a dual probe, which contains two samples, achieves an SNR enhancement by a factor close to the square root of 2 compared with a solenoid optimized for one sample.

View Article and Find Full Text PDF

We study, both theoretically and experimentally, tunable metasurfaces supporting sharp Fano-resonances inspired by optical bound states in the continuum. We explore the use of arsenic trisulfide (a photosensitive chalcogenide glass) having optical properties which can be finely tuned by light absorption at the post-fabrication stage. We select the resonant wavelength of the metasurface corresponding to the energy below the arsenic trisulfide bandgap, and experimentally control the resonance spectral position via exposure to the light of energies above the bandgap.

View Article and Find Full Text PDF

Preclinical MR applications at 17.2 T can require field of views on the order of a few square centimeters. This is a challenging task as the proton Larmor frequency reaches 730 MHz.

View Article and Find Full Text PDF

The spatial resolution and signal-to-noise ratio (SNR) attainable in magnetic resonance microscopy (MRM) are limited by intrinsic probe losses and probe-sample interactions. In this work, the possibility to exceed the SNR of a standard solenoid coil by more than a factor-of-two is demonstrated theoretically and experimentally. This improvement is achieved by exciting the first transverse electric mode of a low-loss ceramic resonator instead of using the quasi-static field of the metal-wire solenoid coil.

View Article and Find Full Text PDF

Electromagnetic cloaking, as challenging as it may be to the physicist and the engineer has become a topical subject over the past decade. Thanks to the transformations optics (TO) invisibility devices are in sight even though quite drastic limitations remain yet to be lifted. The extreme material properties which are deduced from TO can be achieved in practice using dispersive metamaterials.

View Article and Find Full Text PDF

Earlier work on RF metasurfaces for preclinical MRI has targeted applications such as whole-body imaging and dual-frequency coils. In these studies, a nonresonant loop was used to induce currents into a metasurface that was operated as a passive inductively powered resonator. However, as we show in this study, the strategy of using a resonant metasurface reduces the impact of the loop on the global performance of the assembled coil.

View Article and Find Full Text PDF

In this paper, we propose, design and test a new dual-nuclei RF-coil inspired by wire metamaterial structures. The coil operates as a result of resonant excitation of hybridized eigenmodes in multimode flat periodic structures comprising several coupled thin metal strips. It was shown that the field distribution of the coil (i.

View Article and Find Full Text PDF

We show that seismic energy simulated by an artificial source that mainly propagates Rayleigh surface waves, is focused in structured soil made of a grid of holes distributed in the ground. We carry out large-scale field tests with a structured soil made of a grid consisting of cylindrical and vertical holes in the ground and a low frequency artificial source (<10 Hz). This allows the identification of a distribution of energy inside the grid, which can be interpreted as the consequence of a dynamic anisotropy akin to an effective negative refraction index.

View Article and Find Full Text PDF

We begin with a brief historical survey of discoveries of quasi-crystals and graphene, and then introduce the concept of transformation crystallography, which consists of the application of geometric transforms to periodic structures. We consider motifs with three-fold, four-fold and six-fold symmetries according to the crystallographic restriction theorem. Furthermore, we define motifs with five-fold symmetry such as quasi-crystals generated by a cut-and-projection method from periodic structures in higher-dimensional space.

View Article and Find Full Text PDF

Purpose: Perovskites are greatly used nowadays in many technological applications because of their high permittivity, more specifically in the form of aqueous solutions, for MRI dielectric shimming. In this study, full dielectric characterizations of highly concentrated CaTiO /BaTiO water mixtures were carried out and new permittivity maxima was reached.

Methods: Permittivity measurements were done on aqueous solutions from 0%v/v to dry powder.

View Article and Find Full Text PDF

Parallel transmission is a very promising method to tackle B field inhomogeneities at ultrahigh field in magnetic resonant imaging (MRI). This technique is however limited by the mutual coupling between the radiating elements. Here we propose to solve this problem by designing a passive magneto-electric resonator that we here refer to as stacked magnetic resonator (SMR).

View Article and Find Full Text PDF

We report a numerical study on sunscreen design and optimization. Thanks to the combined use of electromagnetic modeling and design of experiments, we are able to screen the most relevant parameters of mineral filters and to optimize sunscreens. Several electromagnetic modeling methods are used depending on the type of particles, density of particles, etc.

View Article and Find Full Text PDF

We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking.

View Article and Find Full Text PDF

We consider the cloaking properties of electromagnetic wired media deduced from arbitrary coordinate transformations. We propose an interpretation of invisibility via sub-wavelength imaging features. The quality of cloaking is assessed by the level of deformation of the image of a P-shaped source through the stretched wired media: the lesser the image deformation, the more effective the cloaking.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the concept of an "invisibility carpet" for linear water waves using both numerical simulations and experimental methods in a wavetank setup.
  • The research first examines a bounded problem in the wavetank configuration before simplifying it by testing the invisibility effect on a vertical dihedral using a structure of 18 trapezoidal poles.
  • The findings indicate that the designed structure successfully renders the dihedral invisible by manipulating the reflected wave patterns in the water.
View Article and Find Full Text PDF

Sunscreens protect from UV radiation, a carcinogen also responsible for sunburns and age-associated dryness. In order to anticipate the transmission of light through UV protection containing scattering particles, we implement electromagnetic models, using numerical methods for solving Maxwell's equations. After having our models validated, we compare several calculation methods: differential method, scattering by a set of parallel cylinders, or Mie scattering.

View Article and Find Full Text PDF

We propose a transformational design of an axi-symmetric gradient lens for electromagnetic waves. We show that a metamaterial consisting of toroidal air channels of diameters ranging from 23 nm to 190 nm in a matrix of Polymethylmethacrylate (PMMA) allows for a focussing effect of light over a large bandwidth i.e.

View Article and Find Full Text PDF

We extend designs of perfect lenses to the focusing of surface plasmon polaritons (SPPs) propagating at the interface between two anisotropic media of opposite permittivity sign. We identify the role played by the components of anisotropic and heterogeneous tensors of permittivity and permeability, deduced from a coordinate transformation, in the dispersion relation governing propagation of SPPs. We illustrate our theory with three-dimensional finite element computations for focusing of SPPs by perfect flat and cylindrical lenses.

View Article and Find Full Text PDF

One of the key challenges in current research into electromagnetic cloaking is to achieve invisibility at optical frequencies and over an extended bandwidth. There has been significant progress towards this using the idea of cloaking by sweeping under the carpet of Li and Pendry. Here, we show that we can harness surface plasmon polaritons at a metal surface structured with a dielectric material to obtain a unique control of their propagation.

View Article and Find Full Text PDF

The ability of gratings made of dielectric ridges placed on top of flat metal layers to open gaps in the dispersion relation of surface plasmon polaritons (SPPs) is studied, both experimentally and theoretically. The gap position can be approximately predicted by the same relation as for standard optical Bragg stacks. The properties of the gap as a function of the grating parameters is numerically analyzed by using the Fourier modal method, and the presence of the gap is experimentally confirmed by leakage radiation microscopy.

View Article and Find Full Text PDF

We adapt tools of transformation optics to surface plasmon polaritons (SPPs) propagating at the interface between two anisotropic media of opposite permittivity sign. We identify the role played by entries of anisotropic heterogeneous tensors of permittivity and permeability--deduced from a coordinate transformation--in the dispersion relation governing propagation of SPPs. We apply this concept to an invisibility cloak, a concentrator and a rotator for SPPs.

View Article and Find Full Text PDF