Publications by authors named "Stefan Dubel"

Article Synopsis
  • Latrodectism, caused by widow spider bites, leads to severe pain and various health complications, posing a significant global health issue, particularly in developing countries.
  • Current treatments include equine serum-derived antivenoms, which have potential risks like allergic reactions, batch variability, and controversial efficacy since latrodectism is seldom fatal.
  • Research has developed fully human antibodies that effectively neutralize alpha-latrotoxin from widow spiders, demonstrating potential for safer, more targeted therapies and diagnostics in the future.
View Article and Find Full Text PDF

There is no doubt that today's life sciences would look very different without the availability of millions of research antibody products. Nevertheless, the use of antibody reagents that are poorly characterized has led to the publication of false or misleading results. The use of laboratory animals to produce research antibodies has also been criticized.

View Article and Find Full Text PDF

As of now, the COVID-19 pandemic has spread to over 770 million confirmed cases and caused approximately 7 million deaths. While several vaccines and monoclonal antibodies (mAb) have been developed and deployed, natural selection against immune recognition of viral antigens by antibodies has fueled the evolution of new emerging variants and limited the immune protection by vaccines and mAb. To optimize the efficiency of mAb, it is imperative to understand how they neutralize the variants of concern (VoCs) and to investigate the mutations responsible for immune escape.

View Article and Find Full Text PDF

The activating receptor natural killer group 2, member D (NKG2D) represents an attractive target for immunotherapy as it exerts a crucial role in cancer immunosurveillance by regulating the activity of cytotoxic lymphocytes. In this study, a panel of novel NKG2D-specific single-chain fragments variable (scFv) were isolated from naïve human antibody gene libraries and fused to the fragment antigen binding (Fab) of rituximab to obtain [CD20×NKG2D] bibodies with the aim to recruit cytotoxic lymphocytes to lymphoma cells. All bispecific antibodies bound both antigens simultaneously.

View Article and Find Full Text PDF

The antigen-binding ability of each antibody clone selected by phage display is usually initially ranked by a screening ELISA using monovalent scFv antibody fragments. Further characterization often requires bivalent antibody molecules such as IgG or scFv-Fc fusions. To produce these, the V region encoding genes of selected hits have to be cloned into a mammalian expression vector and analyzed as a bivalent molecule, requiring a laborious cloning procedure.

View Article and Find Full Text PDF

Interleukin-2 (IL-2) engineered versions, with biased immunological functions, have emerged from yeast display and rational design. Here we reshaped the human IL-2 interface with the IL-2 receptor beta chain through the screening of phage-displayed libraries. Multiple beta super-binders were obtained, having increased receptor binding ability and improved developability profiles.

View Article and Find Full Text PDF

Insect bite hypersensitivity (IBH) is the most common allergic skin disease of horses. It is caused by insect bites of the Culicoides spp. which mediate a type I/IVb allergy with strong involvement of eosinophil cells.

View Article and Find Full Text PDF

Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs.

View Article and Find Full Text PDF

The development of antibody therapies against SARS-CoV-2 remains a challenging task during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against the receptor binding domain (RBD) of the spike, and therefore lose neutralization efficacy against emerging SARS-CoV-2 variants, which frequently mutate in the RBD region. Previously, phage display has been used to identify epitopes of antibody responses against several diseases.

View Article and Find Full Text PDF

Since has caused punctual epidemics through various water systems, the need for a biosensor for fast and accurate detection of pathogenic bacteria in industrial and environmental water has increased. In this report, we evaluated conditions for the capture of live on a surface by polyclonal antibodies (pAb) and recombinant antibodies (recAb) targeting the bacterial lipopolysaccharide. Using immunoassay and PCR quantification, we demonstrated that, when exposed to live in PBS or in a mixture containing other non-target bacteria, recAb captured one third fewer than pAb, but with a 40% lower standard deviation, even when using the same batch of pAb.

View Article and Find Full Text PDF

is the causative agent of listeriosis, a highly lethal disease initiated after the ingestion of -contaminated food. This species comprises different serovars, from which 4b, 1/2a, and 1/2b cause most of the infections. Among the different proteins involved in pathogenesis, the internalins A (InlA) and B (InlB) are the best characterized, since they play a major role in the enterocyte entry of cells during early infection.

View Article and Find Full Text PDF

One of the most widely used epitope tags is the myc-tag, recognized by the anti-c-Myc hybridoma antibody Myc1-9E10. Combining error-prone PCR, DNA shuffling and phage display, we generated an anti-c-Myc antibody variant (Hyper-Myc) with monovalent affinity improved to 18 nM and thermal stability increased by 37%. Quantification of capillary immunoblots and by flow cytometry demonstrated improved antigen detection by Hyper-Myc.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants.

View Article and Find Full Text PDF

Generation of sequence defined antibodies from universal libraries by phage display has been established over the past three decades as a robust method to cope with the increasing market demand in therapy, diagnostics and research. For applications requiring the bivalent antigen binding and an Fc part for detection, phage display generated single chain Fv (scFv) antibody fragments can rapidly be genetically fused to the Fc moiety of an IgG for the production in eukaryotic cells of antibodies with IgG-like properties. In contrast to conversion of scFv into IgG format, the conversion to scFv-Fc requires only a single cloning step, and provides significantly higher yields in transient cell culture production than IgG.

View Article and Find Full Text PDF

Background And Aims: Detection of autoantibodies is a mainstay of diagnosing autoimmune hepatitis (AIH). However, conventional autoantibodies for the workup of AIH lack either sensitivity or specificity, leading to substantial diagnostic uncertainty. We aimed to identify more accurate serological markers of AIH with a protein macroarray.

View Article and Find Full Text PDF

Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases.

View Article and Find Full Text PDF

Recent recommendations from the European Union Reference Laboratory regarding the generation of antibodies using animals have stimulated significant debate. Here, four of the scientists who served on the Scientific Advisory Committee provide clarification of their views regarding the use of animals and platforms in antibody generation.: EURL ECVAM, European Union Reference Laboratory for alternatives to animal testing.

View Article and Find Full Text PDF

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC in a plaque-based live SARS-CoV-2 neutralization assay.

View Article and Find Full Text PDF

COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1.

View Article and Find Full Text PDF

COR-101 is a fully human, Fc silenced IgG that was discovered by antibody phage display. It reduced the SARS-CoV-2 virus load in the lung by more than 99 percent in Hamster models and led to much faster recovery. Its mode of action has been elucidated by solving the atomic structure of its interaction with SARS-CoV-2.

View Article and Find Full Text PDF

Antibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production.

View Article and Find Full Text PDF

The genus Listeria comprises ubiquitous bacteria, commonly present in foods and food production facilities. In this study, three different phage display technologies were employed to discover targets, and to generate and characterize novel antibodies against Listeria: antibody display for biomarker discovery and antibody generation; ORFeome display for target identification; and single-gene display for epitope characterization. With this approach, pyruvate dehydrogenase complex-enzyme 2 (PDC-E2) was defined as a new detection target for Listeria, as confirmed by immunomagnetic separation-mass spectrometry (IMS-MS).

View Article and Find Full Text PDF

Today, recombinant antibodies can replace animal-derived primary antibodies in almost all applications. Due to their monoclonal origin and always known sequence, they offer optimal reproducibility. In contrast, almost all secondary antibodies are still made from animal sera.

View Article and Find Full Text PDF