Publications by authors named "Stefan Dippel"

The paired antennal lobes were long considered the sole primary processing centers of the olfactory pathway in holometabolous insects receiving input from the olfactory sensory neurons of the antennae and mouthparts. In hemimetabolous insects, however, olfactory cues of the antennae and palps are processed separately. For the holometabolous red flour beetle , we could show that primary processing of the palpal and antennal olfactory input also occurs separately and at distinct neuronal centers.

View Article and Find Full Text PDF

Sperm marking provides a key tool for reproductive biology studies, but it also represents a valuable monitoring tool for genetic pest control strategies such as the sterile insect technique. Sperm-marked lines can be generated by introducing transgenes that mediate the expression of fluorescent proteins during spermatogenesis. The homozygous lines established by transgenesis approaches are going through a genetic bottleneck that can lead to reduced fitness.

View Article and Find Full Text PDF

The central complex in the brain of insects provides a neural network for sensorimotor processing that is essential for spatial navigation and locomotion and plays a role in sleep control. Studies on the neurochemical architecture of the central complex have been performed especially in the fruit fly Drosophila melangoaster and the desert locust, Schistocerca gregaria. In several insect species, myoinhibitory peptides (MIPs) are involved in circadian control and sleep-wake regulation.

View Article and Find Full Text PDF

Olfaction is crucial for insects to find food sources, mates, and oviposition sites. One of the initial steps in olfaction is facilitated by odorant-binding proteins (OBPs) that translocate hydrophobic odorants through the aqueous olfactory sensilla lymph to the odorant receptor complexes embedded in the dendritic membrane of olfactory sensory neurons. The (Coleoptera, Tenebrionidae) OBPs encoded by the gene pair and represent the closest homologs to the well-studied OBP Lush (OBP76a), which mediates pheromone reception.

View Article and Find Full Text PDF

Background: Insects depend on their olfactory sense as a vital system. Olfactory cues are processed by a rather complex system and translated into various types of behavior. In holometabolous insects like the red flour beetle Tribolium castaneum, the nervous system typically undergoes considerable remodeling during metamorphosis.

View Article and Find Full Text PDF

In the best studied cases ( feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in , excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators.

View Article and Find Full Text PDF

The central complex is a group of highly interconnected neuropils in the insect brain. It is involved in the control of spatial orientation, based on external compass cues and various internal needs. The functional and neurochemical organization of the central complex has been studied in detail in the desert locust Schistocerca gregaria.

View Article and Find Full Text PDF

Several studies showed adult persisting neurogenesis in insects, including the red flour beetle Tribolium castaneum, while it is absent in honeybees, carpenter ants, and vinegar flies. In our study, we focus on cell proliferation in the adult mushroom bodies of T. castaneum.

View Article and Find Full Text PDF

Background: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models.

View Article and Find Full Text PDF

The use of a site-specific homing-based gene drive for insect pest control has long been discussed, but the easy design of such systems has become possible only with the recent establishment of CRISPR/Cas9 technology. In this respect, novel targets for insect pest management are provided by new discoveries regarding sex determination. Here, we present a model for a suppression gene drive designed to cause an all-male population collapse in an agricultural pest insect.

View Article and Find Full Text PDF

Even in times of advanced site-specific genome editing tools, the improvement of DNA transposases is still on high demand in the field of transgenesis: especially in emerging model systems where evaluated integrase landing sites have not yet been created and more importantly in non-model organisms such as agricultural pests and disease vectors, in which reliable sequence information and genome annotations are still pending. In fact, random insertional mutagenesis is essential to identify new genomic locations that are not influenced by position effects and thus can serve as future stable transgene integration sites. In this respect, a hyperactive version of the most widely used piggyBac transposase (PBase) has been engineered.

View Article and Find Full Text PDF

Background: The red flour beetle Tribolium castaneum is an emerging insect model organism representing the largest insect order, Coleoptera, which encompasses several serious agricultural and forest pests. Despite the ecological and economic importance of beetles, most insect olfaction studies have so far focused on dipteran, lepidopteran, or hymenopteran systems.

Results: Here, we present the first detailed morphological description of a coleopteran olfactory pathway in combination with genome-wide expression analysis of the relevant gene families involved in chemoreception.

View Article and Find Full Text PDF

Background: Chemoreception is based on the senses of smell and taste that are crucial for animals to find new food sources, shelter, and mates. The initial step in olfaction involves the translocation of odorants from the periphery through the aqueous lymph of the olfactory sensilla to the odorant receptors most likely by chemosensory proteins (CSPs) or odorant binding proteins (OBPs).

Results: To better understand the roles of CSPs and OBPs in a coleopteran pest species, the red flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae), we performed transcriptome analyses of male and female antennae, heads, mouthparts, legs, and bodies, which revealed that all 20 CSPs and 49 of the 50 previously annotated OBPs are transcribed.

View Article and Find Full Text PDF

Background: The Sterile Insect Technique (SIT) is an accepted species-specific genetic control approach that acts as an insect birth control measure, which can be improved by biotechnological engineering to facilitate its use and widen its applicability. First transgenic insects carrying a single killing system have already been released in small scale trials. However, to evade resistance development to such transgenic approaches, completely independent ways of transgenic killing should be established and combined.

View Article and Find Full Text PDF

The red flour beetle Tribolium castaneum is emerging as a further standard insect model beside Drosophila. Its genome is fully sequenced and it is susceptible for genetic manipulations including RNA-interference. We use this beetle to study adult brain development and plasticity primarily with respect to the olfactory system.

View Article and Find Full Text PDF