Tuberculosis (TB) diagnosis among sputum-scarce patients is time consuming. Thus, a nonsputum diagnostic alternative is urgently needed. The Mycobacterium tuberculosis-specific transrenal (Tr) DNA from urine is a potential target for TB diagnostics.
View Article and Find Full Text PDFPurpose: Molecular diagnostics of patients with MTB tuberculosis from urine samples.
Methods: We developed a new molecular assay based on the detection of M. tuberculosis-specific transrenal DNA (trDNA) and tested it for the diagnosis of active tuberculosis at the initiation of anti-tuberculosis therapy and during treatment follow-up.
In this study, Raman microspectroscopy has been utilized to identify mycobacteria to the species level. Because of the slow growth of mycobacteria, the per se cultivation-independent Raman microspectroscopy emerges as a perfect tool for a rapid on-the-spot mycobacterial diagnostic test. Special focus was laid upon the identification of Mycobacterium tuberculosis complex (MTC) strains, as the main causative agent of pulmonary tuberculosis worldwide, and the differentiation between pathogenic and commensal nontuberculous mycobacteria (NTM).
View Article and Find Full Text PDFA closed droplet based lab-on-a-chip (LOC) device has been developed for the differentiation of six species of mycobacteria, i.e., both Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), using surface-enhanced Raman spectroscopy (SERS).
View Article and Find Full Text PDFLower respiratory tract infections are the fourth leading cause of death worldwide. Here, a timely identification of the causing pathogens is crucial to the success of the treatment. Raman spectroscopy allows for quick identification of bacterial cells without the need for time-consuming cultivation steps, which is the current gold standard to detect pathogens.
View Article and Find Full Text PDF