Hydrocarbon separation relies on energy-intensive distillation. Membrane technology can offer an energy-efficient alternative but requires selective differentiation of crude oil molecules with rapid liquid transport. We synthesized multiblock oligomer amines, which comprised a central amine segment with two hydrophobic oligomer blocks, and used them to fabricate hydrophobic polyamide nanofilms by interfacial polymerization from self-assembled vesicles.
View Article and Find Full Text PDFThe design of materials and their manufacture into membranes that can handle industrial conditions and separate complex nonaqueous mixtures are challenging. We report a versatile strategy to fabricate polytriazole membranes with 10-nanometer-thin selective layers containing subnanometer channels for the separation of hydrocarbons. The process involves the use of the classical nonsolvent-induced phase separation method and thermal cross-linking.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
Pharmaceutical, chemical, and food industries are actively implementing membrane nanofiltration modules in their processes to separate valuable products and recover solvents. Interfacial polymerization (IP) is the most widely used method to produce thin-film composite membranes for nanofiltration and reverse osmosis processes. Although membrane processes are considered green and environmentally friendly, membrane fabrication has still to be further developed in such direction.
View Article and Find Full Text PDFMembrane-based technologies have a tremendous role in water purification and desalination. Inspired by biological proteins, artificial water channels (AWCs) have been proposed to overcome the permeability/selectivity trade-off of desalination processes. Promising strategies exploiting the AWC with angstrom-scale selectivity have revealed their impressive performances when embedded in bilayer membranes.
View Article and Find Full Text PDFEngineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents.
View Article and Find Full Text PDFInspired by biological proteins, artificial water channels (AWCs) can be used to overcome the performances of traditional desalination membranes. Their rational incorporation in composite polyamide provides an example of biomimetic membranes applied under representative reverse osmosis desalination conditions with an intrinsically high water-to-salt permeability ratio. The hybrid polyamide presents larger voids and seamlessly incorporates I-quartet AWCs for highly selective transport of water.
View Article and Find Full Text PDFWhen building artificial nanochannels, having a scalable robust platform with controlled morphology is important, as well as having the option for final functionalization of the channels for the selective transport of water and proteins. We have previously developed asymmetric membranes that have a surface layer of very sharp pore size distribution, surface charge and pore functionalization. Here, a more complex bioinspired platform is reported.
View Article and Find Full Text PDFHierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs.
View Article and Find Full Text PDFA novel electrocatalytic and microfiltration polymeric hollow fiber is fabricated for simultaneous recovery of energy (H ) and clean fresh water from wastewater, hence addressing two grand challenges facing society in the current century (i.e., providing adequate supplies of clean fresh water and energy as the world's population increases).
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2015
Hydroxyl functionalized polytriazole-co-polyoxadiazole (PTA-POD) copolymers have been synthesized and cast as promising highly thermally stable, chemically resistant, and antiorganic/biological fouling porous substrates for the fabrication of thin-film composite (TFC) forward osmosis (FO) membranes. The roles of PTA/POD ratios in the membrane substrates, TFC layers, and FO membrane performance have been investigated. This study demonstrates that the substrate fabricated from the copolymer containing 40 mol % PTA is optimal for the TFC membranes.
View Article and Find Full Text PDFSolution rheology and electrospinning performance of an aromatic polyimide based on 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 3,3'-dimethyl-4,4'-diaminodiphenylmethane (MMDA) was studied. Analyzing the dependence of specific viscosity on polymer concentration enabled the evaluation of the transition from semidilute unentangled to semidilute entangled regime at 18.3%.
View Article and Find Full Text PDF