IEEE Trans Neural Netw Learn Syst
July 2024
Graph neural networks (GNNs), especially dynamic GNNs, have become a research hotspot in spatiotemporal forecasting problems. While many dynamic graph construction methods have been developed, relatively few of them explore the causal relationship between neighbor nodes. Thus, the resulting models lack strong explainability for the causal relationship between the neighbor nodes of the dynamically generated graphs, which can easily lead to a risk in subsequent decisions.
View Article and Find Full Text PDFObjective: This study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records (EHRs). The primary goal is to provide an overview of the state-of-the-art of this subject, highlighting ongoing research efforts and identifying existing challenges in developing effective GNNs for improved prediction of clinical risks.
Methods: A search was conducted in the Scopus, PubMed, ACM Digital Library, and Embase databases to identify relevant English-language papers that used GNNs for clinical risk prediction based on EHR data.
Background: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images.
View Article and Find Full Text PDFPurpose: The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer's disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer's disease (MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET (18F-FDG PET) and compare model's performance to that of multiple expert nuclear medicine physicians' readers.
Materials And Methods: Retrospective 18F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimer's disease neuroimaging initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Consortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the data and externally tested using 10% as well as comparison to human readers on the same independent test set.