Diatoms often inhabit highly variable habitats where they are confronted with a wide variety of stresses, frequently including starvation of nutrients such as nitrogen. In this study, the transcriptome of the model diatom Phaeodactylum tricornutum was profiled during the onset of nitrogen starvation by RNA sequencing, and overrepresented motifs were determined in promoters of genes that were early and strongly up-regulated during the nitrogen stress response. One of these motifs could be bound by a nitrogen starvation-inducible RING-domain protein termed RING-GAF-Gln-containing protein (RGQ1), which was shown to act as a transcription factor and belongs to a previously uncharacterized family that is conserved in heterokont algae.
View Article and Find Full Text PDFThe most important mechanism in the regulation of transcription is the binding of a transcription factor (TF) to a DNA sequence called the TF binding site (TFBS). Most binding sites are short and degenerate, which makes predictions based on their primary sequence alone somewhat unreliable. We present a new web tool that implements a flexible and extensible algorithm for predicting TFBS.
View Article and Find Full Text PDFTranscription factor binding sites (TFBSs) are DNA sequences of 6-15 base pairs. Interaction of these TFBSs with transcription factors (TFs) is largely responsible for most spatiotemporal gene expression patterns. Here, we evaluate to what extent sequence-based prediction of TFBSs can be improved by taking into account the positional dependencies of nucleotides (NPDs) and the nucleotide sequence-dependent structure of DNA.
View Article and Find Full Text PDFTranscription factors are important gene regulators with distinctive roles in development, cell signaling and cell cycling, and they have been associated with many diseases. The ConTra v2 web server allows easy visualization and exploration of predicted transcription factor binding sites in any genomic region surrounding coding or non-coding genes. In this new version, users can choose from nine reference organisms ranging from human to yeast.
View Article and Find Full Text PDF